Influence of six-step heat treatment on microstructures and mechanical properties of 5160 alloy steel

Pattama APICHAI1,∗

1Department of Physics, Faculty of Science, Lampang Rajabhat University, Muang Lampang, Lampang, 52100, Thailand

Abstract

AISI 5160 alloy steel grade with complete martensite structure to get the high-strength steel sheets quenched at 900 (Q1), 870 (Q2), 840 (Q3) and 810°C (Q4), respectively and tempered at 780°C (Q5) and 680°C (Q6), respectively. The results show ferrite and pearlitic microstructural appeared in as-sheet conditions. The strengthening rarely increased with increasing heat treatment steps, while the percentage elongation gradually decreased. The hardness change was secure with that of strengthening for the quenched martensite. In contrast, differences between the initial martensite hardness were no noticeable changes. The Q4 hardening involved the peak hardness and maximum ultimate tensile strength due to carbide distribution in the martensite matrix. The coarse ferrite grains have occurred after Q5 cause significantly reduced hardness and tensile strength. However, the percentage elongation increased with increasing quenching step to Q5 hardening. The excellent 5160 steel performed by Q6 hardening characteristic gained most hardness, ultimate tensile strength, and elongation approximately 60 HRC, 835 MPa, and 12.09%, respectively. Martensite structure transformed to among carbide distribution tempered martensite matrix.

1. Introduction

Automotive components manufacturers use high carbon and chromium steel, AISI 5160 grade, in leaf and coil springs. Because of their outstanding toughness, increased flexibility, and excellent fatigue resistance [1], they attributed the benefits of alloy steel to optimizations. The development in structural applications of alloy steels consists of two-stage work hardening [2-3]. The process starts with a partial or complete austenitization followed by rapid cooling.

The temperature between martensite starts and finishes to obtain a controlled amount of martensite. Hardened and tempered application steels are widely using to allow constitutions with material exhibits appropriate for their attended benefit. Iron-carbon alloy heated to their suitable quenching temperature, usually between 780°C to 900°C. Accordingly, the instances were tempered at 180°C to 450°C to procure the optimized combining quality of being physically strong, flexible, and challenging [4]. However, the veritable states’ development for all three steps was definitively by steel composition, constitutive size, and the properties demanded. In carbon steel, the FCC initial γ-austenite phase mainly was commuting into the BCT α’-martensite structure. Phosphorous was estimated to encourage α’-martensitic reformation and to enlarge the α’-martensite feature heat [5]. The findings enable predicting compounding elements on the form and phase reorganization emerging during deformity in steels. The homogeneous and equal recrystallized austenitic microstructures occurred after heating at 1100°C for 30 min [6]. Developing a new processing technology was controlled-rolled at 1050, 850, 800, 750, and 700°C to get high-strength alloy steel.

Tempering was condition prehistory participated with the especially in the metallurgy of martensite in steels. It illustrated how the structure and material exhibit upon the application of forces change. The metastable specimens carried isothermally at heating, where γ-austenite not be able to uniform. The varies throughout the tempered of α’-martensite can be categorized into compasses. Total carbon in drawbacks solid solution differentiates or manner clusters inside the reliable solution during the first stage. There consequently precipitates as cementite in low-carbon steels and iron-carbides transition in high-carbon alloys. The carbon is absorbed in the solid solution, remarkable if the residue was a metamorphism carbide.

Almost all of the excess carbon precipitated was expanding during two/annealing steps and the carbides whole transform into increasingly steady Fe3C. Retained austenite would analyze during this step. The crystallographic defect carbide’s roughening was recrystallization into coased grains during three/tempering steps [7]. Zhou et al. [8] investigated processed in three steps, intercritical annealing at 780°C for 30 min, intercritical tempering at 660°C for 30 min, and tempering at 500°C for 30 min in low carbon steel. The primary α-ferrite retained austenite, and a small amount of bainite-martensite has occurred. Xie et al. [9] reported that low alloy steels have regular yield strengths of less than 460 MPa in the first steps. And coherently advanced overall percentage elongations, second-step alloy steels have great yield strength up to 1000 MPa but down flexibility.

However, three-step alloy steels concurrently overacting improve yield strength to 800 MPa and outstanding elasticity, with a total percentage elongation identical to the first step. The initiated crack in α’-martensite determines a mobilized stress/strain field, resulting
Influence of six-step heat treatment on microstructures and mechanical properties of 5160 alloy steel

J. Met. Mater. Miner. 32(1). 20273

in an elevated stress/strain in the near ferrite structure. Additionally, high-strength deformation is stored, primary elasticity force can be disconnect ever the crack begins disseminating, resulting in unsteady crack outgrowth [10].

Novel strength steel was composed of multi-heated martensite with different stabilities. Nevertheless, α’-martensitic transforms were a significant spectacle that influenced their application used properties and studied uproariously. As an ongoing requirement for developing 5160 sheets of steel, this offers an advanced federation of excellent strength and great elasticity. As shown in this paper, intellect the α’-martensitic transformation model has received larges of integration. Multi-steps were introduced in prising carbides of intermetallics distributed compounds and Cu carbide precipitates in 5160 alloy steel sheets. The precipitation strengthening relationships of multi-heat treatment alloys have also discoursed.

2. Procedures

2.1 Materials and methods

A hot-rolled sheet AISI-5160 alloy steel sheet with 1.20 cm × 6 cm × 102 cm dimension was used as the as-sheet metal. The chemical element constituent of the 5160-steel was allowed 0.58 wt% C, 0.23 wt% Si, 0.77 wt% Mn, 0.02 wt% P, 0.01 wt% S, 0.73 wt% Cr, 0.04 wt% Ni, 0.03 wt% Cu, and 0.01 wt% V in Fe balance. The multi-heat treatment is compounded of strength-hardening, forwarded by quenched in different media. The heat treatments defined hardening at 900 (Q1), 870 (Q2), 840 (Q3), and 810 ℃ (Q4), respectively, followed by tempering at 780 ℃ (Q5) and 680 ℃ (Q6), respectively, in the experimental procedures. The step-heat treatment conditions and corresponding specimen codes were enumerated schematically in Figure 1. Three types of quenching media, water at room temperature, oil in the air, and brine at 200 ℃, were used to quench the samples.

2.2 Characterization

The as-sheet and heat-treated 5160 specimens were cut to be a diameter of 2 cm × 2 cm × 1 cm. After that, polished on SiC papers to 2000 grit and subsequently prosperously polishing with 1 μm Al2O3. The amount of martensite for each specimen was examined by XRD on Rigaku. The step was 0.02° min⁻¹ over 2θ of 20° to 120° and unfiltered CuKα at 40 kV and 200 mA. The etching applied for scanning electron microscopy (SEM) specimens was 3% Nitric acid volumetric. The morphology and fracture surface were measured on a FEI QUANTA 250.

2.3 Mechanical measurements

Rockwell scale C (HRC) measurements were executed on the unetched samples with a 120-degree diamond cone. The 150 kgf load was pressed into the surface with 15 s of indented time. Ten different interface areas on each example were average. A tension measuring machine was labored out used Hounsfield H10KS. The 50 mm gauge length test samples have corresponded to the standard ASTM E8 circuitous instant.

3. Results and analysis

3.1 Microstructural characterizations

Figure 2(a) presented the x-ray diffraction pattern corresponding to heat treatment of as-sheet, Q1, Q4, Q5, and Q6 heat treatment conditions. The BCC of retaining austenite peak was not overseeding in at all states. The transfiguration of unreformed γ-austenite to bainitic ferrite structure has occurred during the tempered process [10]. The stress field possession reflected in the extensiveness of the XRD peak and intensity. A particular delineation of the prominent peak of (110)α demonstrates in Figure 2(b). The rise expands, and an abbreviation was encountered in the y-axis intenseness. The height of XRD incurred

Figure 1. Schematic of multi-step heat treatments processing.

Figure 2. (a) XRD pattern and (b) prominent peak of (110)α.
a peak width increased as the heat treatment step raised liken with the as-sheet condition, with no residual stressed (solid line), as a description of Lozano et al. [12], except in Q5 heat treatment condition. The diffraction peak width of Q1, Q4, and Q6 heat treatment conditions were shorter than a half-maximum height of as-sheet condition.

The ferrite–pearlite phase in Figure 3 was well orientated along with the rolling direction of as-sheet condition—the appearance of an originally pearlitic after a periodization heat treatment. The "lamellae" of cementite turned into approximately spherical cementite particles. They minimize the amount of β/α interfacial area/energy per unit volume. The multi-step contrasting consisted of four different quenching temperatures (Q1, Q4, Q5, and Q6 heat treatment conditions), which were applied to compare the influence on the microstructural and mechanical measurements of 5160 sheets of steel. The processing route to develop martensite microstructures was according to Figure 4-8. The primary step was quenched after enforced austenite matrix by Q1 hardening followed by water, oil, and brine quench. Figure 4 shows a composition pack of parallel late α′-martensite and blocks of plate α′-martensite. A retained austenite introduces a considerably high-carbon alloy after the quenching process [13].

Figure 5 observed an intercritical tempering at 870°C and 840 ℃, 30 min (Q2 and Q3) operated to originate an α-ferrite and α′-martensite mixture with a distribution of secondary carbide. And the phase present was show improve a distribution of secondary carbide by heat treatment step in Q4. The solid solution reduction during hardening treatment was clearly caused by the copper precipitates distribution [14-16]. In the procedure, regarded intercritical tempered treating, elaborate γ-austenite reverted from alloying-rich α′-martensite. That further enriched by partitioning. Nano-sized microalloying compound carbides and Cu continued to precipitation during this process [8]. Cu-rich
precipitation was used to strengthen the phase into the tempered martensite. Tempered martensite is newly formed from the metastable austenite in the mixture-phase microstructural. Therefore, precipitated inhomogeneously distributed Cu-rich precipitating in the cubic matrix enhanced the tensile strength of the alloy metal [17–19]. Cu-rich precipitated selective precipitating in metastable γ-austenite. The inflexible tempering α′-martensite was a foreshadowing procurator approach for receding the tensile stress.

Figure 7, the steel sheets were then Q5 hardening into the water, oil, and brine quench to refine the martensite structure to be more plate-like with a distribution carbide. Q5 hardening microstructural comprised dark α-ferrite grain following gray regional phases of tempered-martensite. The martensite substructures were changed during tempering at high temperatures, strongly influenced by an expansive dwindling in dislocation denseness and the absolute recovering of late previous boundary [20]. Transformation accommodation dislocations were procreated by tacking hardening α′-martensite into a softening α-ferrite grain. The conversion was helpful in-store strength hardenability of Fe-C alloying by persuading strain-gradient plasticity, autonomous of the α-ferrite particle size [21–22].

Accordingly, the recrystallizing of α-ferrite was detained, and the microstructural was replaced. In the circumstance of 5160 sheets of steel, the matrix’s recrystallization could be retarded by controlling the identical distribution of the binary compound. Which was also finely dispersed, involving the sub-grain amount carbide/ferrite boundaries. The linear crystallographic defect and the transmutation of irregularity directed to a roughening of the grains. The crystallography non-modulation increased among adjoining grains represented in the adjacent Figure 7(a–c). The interfered quenched experimentation was obtained the pinned result qualified by unmelted binary compound of carbon. The inhibition to deformed grain and grain growth anew formed a γ-austenite contribution [23].

Finally, on the 5160 sheets, some intercritically tempering was executed at 680°C (Q6), Figure 8(a–c), followed by water, oil, and brine quenching. The Q6 heat treatment was expected to improve strength and ductility to accept relatively martensite morphology. The samples were directly connected with the heating Fe blocks for a capable thermal alienate [10]. Following the literature [24], supersaturate solid solutions were significantly in the case. The confines of metastable depended on the excessive intensity and the dissolving solids solution balance. It could demonstrate that excess carbon was an essential auxiliary to the collected potency of α′-martensite. The α′-martensite was not a diffusion-less transformation at low-temperature. The origin α′-martensite structures were conserved. The free energy of dislocation density is owned to the entrapping of C content in α′-martensite as a formality of its C intenseness [25].
3.2 Mechanical measurements

Figure 9 showed the variation in the heat treatment conditions’ Rockwell hardness at room temperature. It could be seen that increased the hardness with increased hardening generation correlated to the as-sheet example. The as-sheet steel was about 40 HRC hardness. After Q1 hardening followed by quenching into the water, oil, and brine, it accomplished the maximum hardness of about 65, 60, and 61 HRC.

It was evident that the hardness early relieved slightly and subsequently rose as the hardening procedure increased from Q2 to Q4 hardening conditions. The average hardness values at Q5 specimens of water, oil, and brine quenching were 26, 24, and 27 HRC, respectively, which presented the coarsening tempered-martensite transformation. Some quenchants on microstructure characterization and mechanical properties have been published in Apichai [16]. Moreover, the hardness tended to increase in hardening at Q6 hardening, followed by quenching into oil, brine, and water because the martensite matrix contains a large amount of secondary carbide.

The ultimate tensile strength and percentage elongations were enumerated in Figure 10 and Figure 11, respectively, to contrast the identity materials of the experiments 5160 sheets after various quenching steps. The ultimate tensile strength and elongation in the as-sheet condition were about 510 MPa and 6.8%, respectively. The Q1 to Q6 hardening greatly influenced the ultimate tensile strength and percentage elongations their varied from 447 MPa to 835 MPa and 4.56% to 13.88%, respectively. The process receded brittle by permanent distortion and ductility fracture. Moreover, the coarse phase transformation in the tempering process, which accelerated the ultimate tensile strengths, decreased after Q5 hardening conditions, whereas the percentage elongation increased. After heating at 680°C (Q6) followed by oil quenching, the maximum stress and elongation were 835 MPa and 12.09%, respectively, which was approximately linear with excellent tensile properties. The result indicated that a bulgy quantity of secondary carbide in the α′ martensite structure induced by inclusions was conducive to improve mechanical properties.

Figure 12 and Figure 13 explored the macro-fractography and FE-SEM image of crack ground of five examples from the tensile test. The fractography was characterized by many cracked features connected with the brittle fracture aspect of the as-sheet condition sample in Figure 12. These transform results into brittle martensite with low toughness were consistent with Liu et al. [19].

It was quite notable in Figure 13 that the appearance of the fractured surface involved cleavage facets, tear ridges, and dimples in all of the samples, achieving a signature of integration of ductility fracture and brittleness crack. Figure 13 represented a micrograph of the thin crack interface of the divergent tension specimens. For the as-sheet example in Figure 13(a), the fractured noticeable of a ductility crack was most likely to be observed as a dull and fibrous appearance called dimples. Dimples were featured by the beginning and unification of microvoids round grains. At inherited deformity, the voids expand in volume, and finally, the interconnected tendons of the steels obtained differentiated, producing dimple fracture [10].

After Q1 and Q4 heat treatment, a representative thin crack character grows along the grain boundaries was displayed in Figure 13(b-c). The metallurgy or control determinants affect the interface between two grains. It became a mushy pathway for cleave generating intergranular-stress crack results. Reproach differentiation, a procession of pits and fractures at higher temperatures disclose, and corrosive grain boundary was the rationale for steels to spoil their strength of bonding crack in a weak-intergranular kind. A characteristic edges of lattices fracture indicated the aspect of fracture generation after Q5 heat treatment, as seen in Figure 13(d). Spontaneous brittleness steels or ductility steels influencing certain physical factors. Intergranular crack phases were other kinds of embrittlement. It developed superficial below definite metallurgy terminations affectation the brittleness of the steels.
4. Conclusions

The heat treatment in 5160 sheets of steel was a development of microstructural, hardness, and strength properties. The multi-step processing consists of six different quenching temperatures used to compare the influence on the morphology evaluation and mechanical applications of 5160 steel. At the lower temperature step treatment, the initial and converted to α'-martensite strength increased with increasing quenching step. The Q4 hardening followed by water, oil, and brine were significant factors influencing the hardness and ultimate tensile strength attributed to carbide distribution in the martensite matrix while decreased the percentage elongation. The strengthening dropped sharply after the Q5 hardening stages of quenching. However, a carbide distribution in tempered martensite matrix after Q6 hardening achieved hardness, ultimate tensile strength, and percentage elongation. In summary, The Q6 hardening was an effective way to develop 5160 steel that causes the optimum combination of strength, percentage elongation, and hardness could be overrun by controlling the prior tempered martensite matrix with a carbide distribution form.
Acknowledgements

Lampang Rajabhat University supported this work, and I would like to thank Asst. Prof. Dr. Amporn Weingmoon and Mr. Monchai Ngamrun.

References

