

Facile synthesis of heterostructured g-C₃N₄/Ag -TiO₂ photocatalysts with enhanced visible-light photocatalytic performance

Chonnipha TANGWONGPUTTI¹, Prasert REUBROYCHAROEN², and Pornapa SUJARIDWORAKUN^{3,*}

¹ Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

² Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

³ Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, 10330, Thailand

*Corresponding author e-mail: pornapa.s@chula.ac.th

Received date: 22 November 2021 Revised date 15 January 2022 Accepted date: 17 January 2022

Keywords:

g-C₃N₄/Ag-TiO₂; Surface plasmon resonance; Heterojunction; Visible light

1. Introduction

Abstract

In this study, the g-C₃N₄/Ag-TiO₂ composite photocatalysts were prepared to enhance the efficient utilization of solar energy. The g-C₃N₄ was synthesized by facile heat treatment of urea at 600°C for 4 h, and 0.05 wt% to 3 wt% Ag-TiO₂ were obtained through the chemical reduction method. The composite photocatalysts were prepared by mixing the g-C₃N₄ and Ag-TiO₂ with a weight ratio of 50:50 at room temperature. The photocatalytic efficiency was carried out by using 0.05 g of photocatalysts with 10 mg·L⁻¹ of rhodamine B 120 mL under 60 min of visible light irradiation. The experimental results indicated that a sample with 0.1 wt% Ag-TiO₂ could degrade rhodamine B up to 21.21%. The g-C₃N₄/(0.1 wt% Ag-TiO₂) and g-C₃N₄ showed rhodamine B degradation efficiency up to 100%, which was 10.4 times and 4.7 times of pure TiO₂ and 0.1 wt% Ag-TiO₂, respectively. It can be suggested that the Ag deposited on TiO₂ played an important role in the absorption capability under the visible light through the surface plasmon resonance effect. In addition, heterojunction between g-C₃N₄ and TiO₂ could reduce the recombination of electron-hole pairs.

Nowadays, the photocatalytic process can enhance the efficient utilization of solar energy and degrade water pollutants into carbon dioxide and water, simultaneously. Anatase titanium dioxide (TiO2) is the most widely used as a photocatalyst due to its high photocatalytic efficiency, low toxicity, low cost, and chemical inertness [1,2]. However, TiO₂ has a high recombination rate of electron-hole pairs because of its wide band gap (3.2 eV). In addition, the photocatalytic reaction can be excited by UV which has only 4% of incoming sunlight [3]. To overcome these limitations of TiO2, Ag deposited on TiO2 (Ag-TiO₂) plays an important role in the absorption capability under the visible light through the surface plasmon resonance effect. The excited electron flow from the silver to the conduction band of $\mathrm{Ti}\mathrm{O}_2$ $(Ag \rightarrow Ag^+ + e^-)$ [4-7]. Graphitic carbon nitride (g-C₃N₄) has attracted great attention in photocatalytic applications, for example, the degradation of organic pollutants [8-13], carbon dioxide reduction into energy fuels [14-16], hydrogen production [11,17], and nitrogen fixation [18]. g-C₃N₄ has been simply prepared by one-step calcination of melamine [15,19] or urea [9] at 400°C to 600°C. In addition, g-C₃N₄ has a narrow band gap (2.7 eV) which responds to visible light at 400 nm to 450 nm [10].

From the previous research, Deliang *et al.* [5] reported the Ag-TiO₂ synthesis by photoreduction of silver nitrate (AgNO₃). The Ag⁰ was deposited on TiO₂ (P25) surface in the mixed solution of ethylene glycol and ethanol by UV irradiation. The rhodamine B degradation was reported in terms of first-order kinetics. The decomposition rate of 1 wt% Ag-TiO₂ was 0.11 min⁻¹, which was 22 times of TiO₂ (P25) under visible light irradiation for 30 min. Mengqiao *et al.* [12] synthesized g-C₃N₄/(Ag-TiO₂) by dispersing g-C₃N₄ and Ag-TiO₂ with a mass ratio of 1:1 into DI water by ultrasonication for 3 h. Then, the mixture was dried and calcined at 400°C for 1 h. Rhodamine B degradation was analyzed through decomposition rate. g-C₃N₄/(Ag-TiO₂) had a decomposition rate at 0.0983 min⁻¹ which was 6.3, 2.2, and 1.63 times of TiO₂, Ag-TiO₂, and g-C₃N₄, respectively under visible light irradiation for 30 min. Furthermore, the stability of photocatalysts was important for practical use. Photodegradation of rhodamine B with the reusing ability after 5 cycles of Ag-TiO₂, g-C₃N₄, and g-C₃N₄/Ag-TiO₂ photocatalysts under visible-light irradiation was reported [5,9,12].

In this research, we aim to enhance the photocatalytic activity under visible light irradiation, which is the highest component of sunlight (about 43%) [19]. The optimum Ag loading amount and photocatalytic efficiency for rhodamine B degradation under visible-light irradiation of Ag-TiO₂, g-C₃N₄, and g-C₃N₄/Ag-TiO₂ composite photocatalysts were studied.

2. Experimental

2.1 Materials

Urea $(CO(NH_2)_2, AR.grade, Qrec)$ was used to synthesize the g-C₃N₄ sheet. Anatase titanium dioxide (TiO₂, 99%) was purchased from KRONOS Worldwide, Inc. Silver nitrate (AgNO₃, 99.5%, Merck)

was used as an Ag precursor. Polyvinylpyrrolidone (PVP, 99%, Sigma-Aldrich) and sodium borohydride (NaBH4, 98.5%, Chem-Supply) were used as a stabilizer and reducing agent, respectively. Rhodamine B (RhB, Loba Chemie) was used as the target pollutant.

2.2 Preparation of photocatalysts

g-C₃N₄ was prepared by calcination of 10 g urea at 600°C, 4 h with a heating rate of 5°C·min⁻¹ in a muffle furnace [9]. To synthesize Ag-TiO₂, starting by dissolving AgNO₃ which was used as Ag precursor at 0.05 wt% to 3 wt% in DI water. Next, PVP solution which acted as the dispersant was added to the Ag solution. Then, the Ag-PVP solution was slowly added to the suspension of TiO₂. After that, NaBH₄ was slightly added into the Ag-PVP-TiO₂ suspension to reduce Ag ions through the chemical reduction method from Equation (1) [7]:

$$AgNO_3 + NaBH_4 + 3H_2O \rightarrow Ag + H_3BO_3 + NaNO_3 + \frac{7}{2}H_2$$
 (1)

Finally, the suspension was stirred for 1 h and dried at 110° C, respectively [20]. g-C₃N₄/(Ag-TiO₂) composite photocatalysts were obtained by mixing g-C₃N₄ and 0.1 wt% Ag-TiO₂ with a weight ratio of 50:50 in DI water. To completely disperse, the suspension was stirred for 15 min and sonicated for 15 min, respectively [21]. Finally, the suspension was centrifuged and dried at 60°C to remove the remaining water [12].

2.3 Characterizations

X-ray diffraction (XRD; Bruker, D8 Advance, Germany) with Cu K α radiation ($\lambda = 1.5406$ Å) was used to determine the crystalline phase of the prepared photocatalysts. The crystallite size was calculated using the Scherrer equation by Equation (2) [8].

$$D = \frac{k\lambda}{\beta cos\theta} \tag{2}$$

Where D was the average crystallite size (nm), k was the dimensionless shape factor = 0.9, λ was the X-ray wavelength = 0.15406 (nm), β was the full width at half maximum (radians), θ was Bragg-diffraction angle (radians).

Photoluminescence (PL) spectra were studied at room temperature on a fluorescence spectrometer (PerkinElmer LS 55) with an excitation wavelength of 325 nm.

The specific surface area, pore size, and pore volume of samples were analyzed using a surface area and porosimetry analyzer (Micromeritics, 3Flex 3500) at 77 K. Before analyzing, the samples were degassed at 300°C for 12 h under vacuum. The specific surface area was determined by Brunauer-Emmett-Teller (BET). Pore size and pore volume were calculated by Barrett-Joyner-Halenda (BJH) which appropriated with mesopore range.

Morphology and structure were obtained using a transmission electron microscope (TEM, JEOL JEM-1400) at 120 kV.

2.4 Photocatalytic efficiency evaluation

Photocatalytic efficiency was examined by rhodamine B degradation under a visible light source (120 mW·cm⁻², 300 W Xe lamp with UV

cutoff filter). The distance between the sample and the light source was equal to 20 cm. 0.05 g photocatalyst was dispersed into 10 ppm rhodamine B 120 mL by ultrasonic wave for 5 min. Before the light irradiation, the suspension was stirred in dark for 30 min to reach the adsorption-desorption equilibrium. The solution was collected 5 mL every 10 min from both under dark and light irradiation. Then, the solution was centrifuged to remove catalyst and analyzed concentration by UV–Vis spectrophotometer (Perkin Elmer Lambda 35) at the maximum absorbance wavelength 554 nm. The dye degradation efficiency of all samples was compared in terms of C/C₀ (mg·L⁻¹) and time (min) and calculated in terms of efficiency (%) by Equation (3-4):

Dye adsorption efficiency (%) =
$$\frac{C_0 - C_D}{C_0} \times 100$$
 (3)

Dye degradation efficiency (%) =
$$\frac{C_D - C}{C_D} \times 100$$
 (4)

Where C_0 was the initial concentration (mg·L⁻¹), C_D was the dye concentration after keeping in dark (mg·L⁻¹), C was the dye concentration at each irradiated time (mg·L⁻¹).

3. Results and discussion

Ì

3.1 Crystallographic Information

XRD patterns of pristine TiO₂, 0.1 wt% Ag-TiO₂, g-C₃N₄, and g-C₃N₄/(0.1 wt% Ag-TiO₂) composite photocatalysts were shown in Figure 1. The diffraction peaks at around 25.3° (101), 37.8° (004), 48.2° (200), 54.0° (105), 55.2° (211), 62.7° (204), 68.9° (116), 70.3° (220), 75.1° (215) observed in TiO₂, 0.1 wt% Ag-TiO₂ and g-C₃N₄/ (0.1 wt% Ag-TiO₂) were lattice planes of anatase TiO₂ (JCPDS card no. 21-1272) [22]. Due to the ionic radius of Ag⁺ ion being larger than that of Ti⁴⁺ ion, thus Ag⁺ tended to be observed on TiO₂ surface instead of being incorporated into TiO₂ lattice sites [23,24]. The characteristic peaks of Ag were not appeared for 0.1 wt% Ag-TiO₂ sample due to its low contents or high dispersity [12,20]. For g-C₃N₄, the diffraction peaks at 13.1° (100) and 27.4° (002) could be attributed to in-plane structural packing of tri-s-triazine repeating units and graphite-like

Figure 1. XRD patterns of TiO₂, 0.1 wt% Ag-TiO₂, g-C₃N₄, and g-C₃N₄/(0.1 wt% Ag-TiO₂) composite photocatalysts.

49

stacking, respectively (JCPDS Card No. 87-1526) [9,12,22]. which would enhance the rate of electron transfer on the surface of the catalyst [10]. It was shown that the g-C₃N₄/(0.1 wt% Ag-TiO₂) composite photocatalysts consisted of the characteristic peak of both g-C₃N₄ and Ag-TiO₂. In addition, the phase structures and peak position of the TiO₂ and g-C₃N₄ were not changed after composite preparation. The crystallite size of pristine TiO₂, TiO₂ in the Ag-TiO₂ and g-C₃N₄/ (0.1 wt% Ag-TiO₂) calculated by the Scherrer equation (Equation (2)), were about 42.4, 41.7, and 41.4, respectively. It was demonstrated that the crystallite size of TiO₂ had almost not changed.

3.2 Photoluminescence emission

The recombination of electron-hole pairs which is considered to be the major factor that affects photocatalytic performance was investigated by the photoluminescence (PL) emission. Low PL intensity indicates the low recombination of electron-hole pairs and high photocatalytic efficiency, respectively. Figure 2 showed that the g-C₃N₄ had strong PL intensity at 455 nm as a result of the transition of lone pair electron to the π^* conduction band [25]. While the composite with a weight ratio of g-C₃N₄:0.1 wt% Ag-TiO₂ at 50:50 had lower PL intensity compared with pure g-C₃N₄ at 455 nm because of electron transfer from electron conduction bridge of Ag and heterojunction between g-C₃N₄ and TiO₂ [22]. The maximum wavelength of about 390 nm, Ag-TiO₂, and g-C₃N₄/(Ag-TiO₂) had lower intensity than pure TiO₂. It indicated that a heterostructured composite could reduce electron-hole recombination and enhance the efficiency of TiO₂.

3.3 Nitrogen adsorption-desorption

The specific surface area, pore size, and pore volume of samples were analyzed by nitrogen adsorption-desorption isotherm as shown in Figure 3. Mesopores in the samples were verified by hysteresis loop type IV and BJH calculation [10]. From Table 1, BET specific surface area of TiO₂, 0.1 wt% Ag-TiO₂, g-C₃N₄, g-C₃N₄/(0.1 wt% Ag-TiO₂) were 7.84, 8.31, 94.39, 42.91 m²·g⁻¹, respectively. g-C₃N₄ had the highest specific surface area which corresponded to the highest dye adsorption efficiency in the dark as shown in Figure 7.

3.4 Morphology and structure

TEM images of TiO₂, g-C₃N₄, and g-C₃N₄/(0.1 wt% Ag-TiO₂) were shown in Figure 4. Figure 4(a) displayed the agglomeration of TiO₂ particles with spherical-like morphology. For g-C₃N₄, it had the thin layer and lamellar structure as shown in Figure 4(b). The g-C₃N₄/ (0.1 wt% Ag-TiO₂) composite was illustrated in Figure 4(c) composed of the spherical-like particle of TiO₂ dispersed on the g-C₃N₄ sheet.

3.5 Band potential determination

The band potentials of photocatalyst were used to describe the photocatalytic mechanism. Which calculated using the following equations [13,26]:

$$E_{VB} = \chi + 0.5E_g - E^e \tag{5}$$

$$E_{CB} = E_{VB} - E_g \tag{6}$$

Where E_{VB} and E_{CB} were the valence band and conduction band potential, respectively χ was the absolute electronegativity of

Figure 2. PL spectra of $g-C_3N_4$, $g-C_3N_4/(0.1 \text{ wt\% Ag-TiO}_2)$, TiO₂, and 0.1 wt% Ag-TiO₂ composite photocatalysts.

Figure 3. Nitrogen adsorption-desorption isotherm of TiO_2 , 0.1 wt% Ag- TiO_2 , g- C_3N_4 , and g- $C_3N_4/(0.1 wt% Ag-TiO_2)$ with a weight ratio of 50:50.

Table 1. The specific surface area, pore size, and pore volume of TiO₂ and prepared photocatalysts.

Type of photocatalysts	S _{BET}	BJH Pore size	BJH Pore volume	
	$(m^{2} \cdot g^{-1})$	(nm)	(cm³·g ⁻¹)	
TiO ₂	7.84	20.29	0.0318	
0.1 wt% Ag-TiO ₂	8.31	16.60	0.0330	
$g-C_3N_4$	94.39	19.63	0.4426	
g-C ₃ N ₄ /(0.1 wt% Ag-TiO ₂)	42.91	19.98	0.2251	

Figure 4. TEM images of (a) TiO₂ (50,000x), (b) g-C₃N₄ (300,000x), and (c) g-C₃N₄/(0.1 wt% Ag-TiO₂) with a weight ratio of 50:50 (150,000x).

constituent atoms of semiconductor (TiO₂ = 5.81 eV [27], g-C₃N₄ = 4.73 eV [28]). E_g was the band gap energy of semiconductor (Anatase TiO₂ = 3.28 eV [29], g-C₃N₄ = 2.82 eV [9]). E^e was the energy of free electron on hydrogen scale (4.5 eV). The values of Ev_B and E_{CB} of TiO₂ and g-C₃N₄ was shown in Table 2.

3.6 Photocatalytic efficiency

The photocatalytic efficiency of TiO2 and Ag-TiO2 with various Ag loading contents (0.05 wt% to 3 wt%) were tested under the simulated visible light irradiation for 60 min as shown in Figure 5. The result shows that, the 0.1 wt% Ag-TiO₂ sample showed the highest RhB dye degradation efficiency at 21.21%, which is 2.2 times higher than that of pure TiO2 under the same condition. The deposition of Ag on the TiO2 surface with the optimum condition could enhance the dye degradation efficiency due to the surface plasmon resonance effect [5,6]. When the surface plasmon band of Ag absorbed the visible light, the excited electron would transfer to the conduction band of TiO₂ (Ag \rightarrow Ag⁺ + e⁻) [4] and increase the oxidation molecules to degrade the organic dye, respectively [30]. On the other hand, at higher silver content (0.2 wt% to 3 wt%), the photocatalytic efficiency trended to decrease because of the agglomeration of Ag particles which would block the reaction site at the TiO₂ surface [31] and act as a recombination center, resulting in reduced photoactivity [32].

The correlation between C/C₀ and time of TiO₂, Ag-TiO₂, g-C₃N₄, and composite photocatalyst was shown in Figure 6. The results indicated that the rhodamine B dye was stable under visible irradiation while it was degraded in the presence of photocatalyst samples. The Ag-TiO₂ exhibited higher performance than pure TiO₂, in that both of TiO₂ and 0.1 wt% Ag-TiO₂ could not completely degrade RhB dye within the range of studied time (60 min). While g-C₃N₄/(0.1 wt% Ag-TiO₂) composite and g-C₃N₄ completely degraded RhB dye within 30 min and 20 min, respectively. It was shown that the photocatalytic efficiency obtained from this work was higher than that of previous reports [10,12,33]. As demonstrated in Figure 6 and Figure 7, g-C₃N₄ and g-C₃N₄/(0.1 wt% Ag-TiO₂) composite performed high degradation efficiency due to the effect of the high dye adsorption ability and suitable band gap energy for visible-light absorption of g-C₃N₄. As the results, the dye degradation efficiency of 0.1 wt% Ag-TiO₂ was 21.21% which was 2.2 times higher than pure TiO₂ (9.62%). The g-C₃N₄/(0.1 wt% Ag-TiO₂) and g-C₃N₄ had dye degradation efficiency at 100% which was 10.4 times and 4.7 times of TiO₂ and Ag-TiO₂, respectively under visible light irradiation for 60 min. It was suggested that the improved photocatalytic activity of the composite would be further studied by varying and finding the optimum ratio between g-C₃N₄ and Ag-TiO₂.

Figure 5. The correlation between C/C_0 and time of TiO₂ and 0.05 wt% to 3 wt% Ag-TiO₂ composite photocatalysts under visible light irradiation for 60 min.

Table 2. Absolute electronegativity (χ), band gap energy (E_g), valence band potential (E_{VB}), and conduction band potential (E_{CB}) of TiO₂ and g-C₃N₄ photocatalysts.

Photocatalysts	χ (eV)	E _g (eV)	$E_{VB}\left(eV ight)$	E _{CB} (eV)
TiO ₂	5.81	3.28	2.95	-0.33
g-C ₃ N ₄	4.73	2.82	1.64	-1.18

Figure 6. The correlation between C/C_0 and time of TiO_2 , 0.1 wt% Ag- TiO_2 , g- $C_3N_4/(0.1 wt\% Ag-TiO_2)$ with a weight ratio of 50:50, and g- C_3N_4 under visible light irradiation for 60 min.

10

Time (min)

20

Visible

Rhodamine B

0.1 wt% Ag-TiO2

g-C₃N₄/(0.1 wt% Ag-TiO₂)

40

50

60

TiO2

g-C₃N₄

30

The photocatalytic mechanism of g-C₃N₄/Ag-TiO₂ composite photocatalysts was proposed in Figure 8. The conduction band and valence band of g-C₃N₄ was a higher potential than TiO₂ therefore it was suitable for the formation of heterojunction with TiO2. When g-C₃N₄ absorbed and excited under the visible-light irradiation, the photogenerated electron at the conduction band of g-C₃N₄ (-1.18) would generally go down to the lower conduction band potential of TiO_2 (-0.33). As a result, the recombination of electron-hole pairs was decreased [10,12,34]. At the same time, the deposited Ag nanoparticles responded to visible light which could produce electrons by surface plasmon resonance effect and also served as electron conduction bridge to transfer the electron from g-C₃N₄ to the conduction band of TiO₂ [33]. These photogenerated electrons (e⁻(CB)) could be trapped by O2 in an aqueous solution to produce free radical, e.g., superoxide (0_2^{-1}) , hydroperoxyl radical (HOO⁻), and OH⁻ radical. Then, OH⁻ radical reacted with dye to become CO2 and H2O [35] by the following equations:

Figure 7. The comparison of dye adsorption efficiency (%) after keeping in dark for 30 min and dye degradation efficiency (%) under visible light irradiation for 60 min of TiO₂, 0.1 wt% Ag-TiO₂, g-C₃N₄/(0.1 wt% Ag-TiO₂) and g-C₃N₄ photocatalysts.

$$O_2 + e^{-}(CB) \to O_2^{-}(ads) \tag{7}$$

$$O_2(ads) + H^+ \leftrightarrow HOO(ads)$$
 (8)

$$2HOO'(ads) \rightarrow H_2O_2(ads) + O_2 \tag{9}$$

$$H_2O_2(ads) \rightarrow 2OH(ads)$$
 (10)

$$Dye + OH \to CO_2 + H_2O \tag{11}$$

The photogenerated hole ($h^+(VB)$) at the valence band of g-C₃N₄ directly reacted with dye by themselves [12,36] to generate the oxidation products as shown in the equation:

$$Dye + h^+(VB) \rightarrow oxidation \ products$$
 (12)

Figure 8. Possible photocatalytic mechanism of g-C₃N₄/Ag-TiO₂ composite photocatalysts under visible light irradiation.

1.0

0.8

0.6

0.4

0.2

0

-30

-20

-10

0

C/C0

Dark

4. Conclusions

In this study, the enhanced photocatalytic activity under visible light of Ag-TiO2 photocatalysts was performed. The highest photocatalytic activity for degradation of RhB dye of Ag-TiO2 photocatalyst was obtained from sample loading with 0.1 wt% Ag. The photodegradation efficiency under visible light irradiation of the composite composed of g-C₃N₄ and 0.1 wt% Ag-TiO₂ at a weight ratio of 50:50 was 10.4 times and 4.7 times higher than the pristine TiO₂ and 0.1 wt% Ag-TiO₂, respectively. The high photocatalytic performance of the composite under visible light was caused by the following aspects: (1) visible light absorption of narrow band gap from g-C₃N₄, and through surface plasmon resonance effect from Ag (2) high dye adsorption ability of g-C₃N₄ (3) retarding of recombination of photogenerated carriers by electron conduction bridge of Ag and heterojunction structure. In summary, this study may offer the facile method for preparing Ag-TiO2 and g-C3N4/Ag-TiO2 composite photocatalysts to remediate the organic pollutant in wastewater under visible-light excitation.

Acknowledgements

The authors acknowledge financial support by the GAICCE Research Grant from ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED-net), and the Scholarship from the Graduate School, Chulalongkorn University to commemorate the 72nd anniversary of his Majesty King Bhumibol Adulyadej is gratefully acknowledged. In addition, we are also thankful to Metallurgy and Materials Science Research Institute (MMRI) Chulalongkorn University for the research facility and equipment.

References

- [1] M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O'Shea, M. H. Entezari, and D. D. Dionysiou, "A review on the visible light active titanium dioxide photocatalysts for environmental applications," *Applied Catalysis B: Environmental*, vol. 125, pp. 331-349, 2012.
- [2] C. Su, C. M. Tseng, L. F. Chen, B. H. You, B. C. Hsu, and S. S. Chen, "Sol-hydrothermal preparation and photocatalysis of titanium dioxide," *Thin Solid Films*, vol. 498, no. 1-2, pp. 259-265, 2006.
- [3] J. Wen, J. Xie, X. Chen, and X. Li, "A review on g-C₃N₄-based photocatalysts," *Applied Surface Science*, vol. 391, pp. 72-123, 2017.
- [4] C. Gunawan, W. Y. Teoh, C. P. Marquis, J. Lifia, and R. Amal, "Reversible Antimicrobial Photoswitching in Nanosilver," *Small*, vol. 5, no. 3, pp. 341-344, 2009.
- [5] D. Chen, Q. Chen, L. Ge, L. Yin, B. Fan, H. Wang, H. Lu, H. Xu, R. Zhang, and G. Shao, "Synthesis and Ag-loading-densitydependent photocatalytic activity of Ag@TiO₂ hybrid nanocrystals," *Applied Surface Science*, vol. 284, pp. 921-929, 2013.
- [6] K. H. Leong, B. L. Gan, S. Ibrahim, and P. Saravanan, "Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO₂ photocatalyst for degradation of endocrine disturbing compounds," *Applied Surface Science*, vol. 319, pp. 128-135, 2014.

- [7] M. Stucchi, C. L. Bianchi, C. Argirusis, V. Pifferi, B. Neppolian, G. Cerrato, and D. C. Boffito, "Ultrasound assisted synthesis of Ag-decorated TiO₂ active in visible light," *Ultrason Sonochem*, vol. 40, no. Pt A, pp. 282-288, 2018.
- [8] R. Fagan, D. E. McCormack, S. J. Hinder, and S. C. Pillai, "Photocatalytic properties of g-C₃N₄-TiO₂ heterojunctions under UV and visible light conditions," *Materials (Basel)*, vol. 9, no. 4, 2016.
- [9] T. Narkbuakaew, and P. Sujaridworakun, "Synthesis of Tri-S-Triazine Based g-C₃N₄ Photocatalyst for Cationic Rhodamine B Degradation under Visible Light," *Topics in Catalysis*, vol. 63, no. 11, pp. 1086-1096, 2020.
- [10] G. Sui, J. Li, L. Du, Y. Zhuang, Y. Zhang, Y. Zou, and B. Li, "Preparation and characterization of g-C₃N₄/Ag–TiO₂ ternary hollowsphere nanoheterojunction catalyst with high visible light photocatalytic performance," *Journal of Alloys and Compounds*, vol. 823, p. 153851, 2020.
- [11] Y. Xing, X. Wang, S. Hao, X. Zhang, X. Wang, W. Ma, G. Zhao, and X. Xu, "Recent advances in the improvement of g-C₃N₄ based photocatalytic materials," *Chinese Chemical Letters*, vol. 32, no. 1, pp. 13-20, 2021.
- [12] M. Zang, L. Shi, L. Liang, D. Li, and J. Sun, "Heterostructured g-C₃N₄/Ag–TiO₂ composites with efficient photocatalytic performance under visible-light irradiation," *RSC Advances*, vol. 5, no. 69, pp. 56136-56144, 2015.
- [13] J. Zhang, Y. Hu, X. Jiang, S. Chen, S. Meng, and X. Fu, "Design of a direct Z-scheme photocatalyst: preparation and characterization of Bi₂O₃/g-C₃N₄ with high visible light activity," *J Hazard Mater*, vol. 280, pp. 713-22, 2014.
- [14] Z. Sun, H. Wang, Z. Wu, and L. Wang, "g-C₃N₄ based composite photocatalysts for photocatalytic CO₂ reduction," *Catalysis Today*, vol. 300, pp. 160-172, 2018.
- [15] D. O. Adekoya, M. Tahir, and N. A. S. Amin, "g-C₃N₄/(Cu/TiO₂) nanocomposite for enhanced photoreduction of CO₂ to CH₃OH and HCOOH under UV/visible light," *Journal of CO₂ Utilization*, vol. 18, pp. 261-274, 2017.
- [16] S. Singh, A. Modak, and K. K. Pant, "CO₂ Reduction to Methanol Using a Conjugated Organic–Inorganic Hybrid TiO₂–C₃N₄ Nano-assembly," *Transactions of the Indian National Academy of Engineering*, vol. 6, no. 2, pp. 395-404, 2021.
- [17] J. Wang, J. Huang, H. Xie, and A. Qu, "Synthesis of g-C₃N₄/ TiO₂ with enhanced photocatalytic activity for H₂ evolution by a simple method," *International Journal of Hydrogen Energy*, vol. 39, no. 12, pp. 6354-6363, 2014.
- [18] G. Zhao, and X. Xu, "Cocatalysts from types, preparation to applications in the field of photocatalysis," *Nanoscale*, vol. 13, no. 24, pp. 10649-10667, 2021.
- [19] Z. Zou, J. Ye, K. Sayama, and H. Arakawa, "Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst," *Nature*, vol. 414, no. 6864, pp. 625-7, 2001.
- [20] T. Narkbuakaew, and P. Sujaridworakul, "Enhancement of Photocatalytic Performance of Anatase by Silver Deposition through Chemical Reduction Process at Room Temperature," *Materials Science Forum*, vol. 998, pp. 71-77, 2020.
- [21] Y. Liu, S. Wu, J. Liu, S. Xie, and Y. Liu, "Synthesis of g-C₃N₄/ TiO₂ nanostructures for enhanced photocatalytic reduction of U(vi) in water," *RSC Advances*, vol. 11, no. 8, pp. 4810-4817, 2021.

- [22] R. Geng, J. Yin, J. Zhou, T. Jiao, Y. Feng, L. Zhang, Y. Chen, Z. Bai, and Q. Peng, "In Situ Construction of Ag/TiO₂/g-C₃N₄ Heterojunction Nanocomposite Based on Hierarchical Co-Assembly with Sustainable Hydrogen Evolution," *Nanomaterials (Basel)*, vol. 10, no. 1, 2019.
- [23] X. Gao, B. Zhou, and R. Yuan, "Doping a metal (Ag, Al, Mn, Ni and Zn) on TiO₂ nanotubes and its effect on Rhodamine B photocatalytic oxidation," *Environmental Engineering Research*, vol. 20, no. 4, pp. 329-335, 2015.
- [24] J. Vargas Hernández, S. Coste, A. García Murillo, F. Carrillo Romo, and A. Kassiba, "Effects of metal doping (Cu, Ag, Eu) on the electronic and optical behavior of nanostructured TiO₂," *Journal of Alloys and Compounds*, vol. 710, pp. 355-363, 2017.
- [25] P. Xia, B. Cheng, J. Jiang, and H. Tang, "Localized π-conjugated structure and EPR investigation of g-C₃N₄ photocatalyst," *Applied Surface Science*, vol. 487, pp. 335-342, 2019.
- [26] Q. Yuan, L. Chen, M. Xiong, J. He, S.-L. Luo, C.-T. Au, and S.-F. Yin, "Cu₂O/BiVO₄ heterostructures: synthesis and application in simultaneous photocatalytic oxidation of organic dyes and reduction of Cr(VI) under visible light," *Chemical Engineering Journal*, vol. 255, pp. 394-402, 2014.
- [27] H. Y. Hafeez, S. K. Lakhera, N. Narayanan, S. Harish, Y. Hayakawa, B. K. Lee, and B. Neppolian, "Environmentally Sustainable Synthesis of a CoFe₂O₄-TiO₂/rGO Ternary Photo-catalyst: A Highly Efficient and Stable Photocatalyst for High Production of Hydrogen (Solar Fuel)," ACS Omega, vol. 4, no. 1, pp. 880-891, 2019.
- [28] J. Liu, "Origin of High Photocatalytic Efficiency in Monolayer g-C₃N₄/CdS Heterostructure: A Hybrid DFT Study," *The Journal* of *Physical Chemistry C*, vol. 119, no. 51, pp. 28417-28423, 2015.
- [29] T. Narkbuakaew, and P. Sujaridworakun, "Role of Ag (0) deposited on TiO₂ nanoparticles for superior photocatalytic

performance induced by calcination," *Optical Materials*, vol. 98, p. 109407, 2019.

- [30] Q. Zhang, D. Q. Lima, I. Lee, F. Zaera, M. Chi, and Y. Yin, "A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration," *Angew Chem Int Ed Engl*, vol. 50, no. 31, pp. 7088-7092, 2011.
- [31] S. I. Mogal, V. G. Gandhi, M. Mishra, S. Tripathi, T. Shripathi, P. A. Joshi, and D. O. Shah, "Single-Step Synthesis of Silver-Doped Titanium Dioxide: Influence of Silver on Structural, Textural, and Photocatalytic Properties," *Industrial & Engineering Chemistry Research*, vol. 53, no. 14, pp. 5749-5758, 2014.
- [32] Y. Wu, H. Liu, J. Zhang, and F. Chen, "Enhanced Photocatalytic Activity of Nitrogen-Doped Titania by Deposited with Gold," *The Journal of Physical Chemistry C*, vol. 113, no. 33, pp. 14689-14695, 2009.
- [33] Y. Chen, W. Huang, D. He, Y. Situ, and H. Huang, "Construction of Heterostructured g-C₃N₄/Ag/TiO₂ Microspheres with Enhanced Photocatalysis Performance under Visible-Light Irradiation," ACS Applied Materials & Interfaces, vol. 6, no. 16, pp. 14405-14414, 2014.
- [34] J. Ge, Y. Zhang, Y.-J. Heo, and S.-J. Park, "Advanced Design and Synthesis of Composite Photocatalysts for the Remediation of Wastewater: A Review," *Catalysts*, vol. 9, no. 2, p. 122, 2019.
- [35] A. Ajmal, I. Majeed, R. N. Malik, H. Idriss, and M. A. Nadeem, "Principles and mechanisms of photocatalytic dye degradation on TiO₂ based photocatalysts: a comparative overview," *RSC Adv.*, vol. 4, no. 70, pp. 37003-37026, 2014.
- [36] S. Zhao, S. Chen, H. Yu, and X. Quan, "g-C₃N₄/TiO₂ hybrid photocatalyst with wide absorption wavelength range and effective photogenerated charge separation," *Separation and Purification Technology*, vol. 99, pp. 50-54, 2012.