การใช้ $\mathbf{Z n}$ - Alloy แทน $\mathbf{Z n}$ เพื่อเคลือบแผ่นเหล็ก ที่ใช้ในรถยนต์

อาจารย่ประสงค์ ศรีเจิิญชัย ภาควิชาวิศวกรรมโลหการ
คณะวิศวกรรมศาสตร์ จุฬำลงกรณ์มหาวิทยาลัย

จงกการที่ในอเมริกา แคนาดา และยุโรป ใช้เกลือละลายหิมะ (deicing satt) ตมมท้องถนนในฤดูหนาวนั้น ทำให้
 sheet steel ให้ดีขึ้น กรรมวิธีการเคลือบชั้นสักกะสีด้วยไฟฟ้าก่อนการเคลือบสีที่ใช้แทนการเคลือบสังกะสีแบบจุมมร้อน (hot dip galvanizing) นั้น เนื่องจากช่วยให้กรรข้้นรูป (formabiily) และการเซื่อม (weldability) ดีขึ้น จากการที้ช้น เคลือบบางไม่ท่ใให้คุณสมบัติทงกล (mechanical property) ของโลหะพื้น (base metal) เปลี่ยนแปลงมมกกััก ขณะ เดียวกันก็สามารถป้องกันการกัดกร่อนได้ดี อย่าไไร็ดี การเคลือบด้วยสังกะสีเพ็ยงอย่างเดียวนั้นต้องเคลือบให้หนาพอ สมควร $\left(40 \mathrm{~g} / \mathrm{m}^{2}\right)$ เพื่อให้สมมารถป้องกันการกัดกร่อนได้นานพอควรกับระยะเวลาการใช้รถยนต์ก์ทำให้การจึ้นรูปและ การเซื่อมแย่ลง ดังนั้นจีงต้องหหธาตุผสม (alloying element) ที่พอจะเพื่มความต้านทานการกัดกร่อนได้ดีกว่า ซึ่งก็จะ สามารถลดความหนขของการเคลือบลไได้

จากกรรพบว่าธาตุ $\mathrm{Al}, \mathrm{Mg}, \mathrm{Ni}, \mathrm{Co}$ และ Mn สามารถชะลอการเปลี่ยนแปลง $\mathrm{Zn}\left(\mathrm{OH}_{2}\right)$ ให้เป็น ZnO ช้าลไเด้ ท่ให้มีมีารน่า $\mathrm{Ni}, \mathrm{Co}, \mathrm{Mn}$ เป็นธตตุผสมในการ เคลือบ Zn -alloy ด้วยกระแสไฟ้้า และเข้ใใจันว่าการที่ corrosion product ของสังกะสี $\left[\mathrm{Zn}(\mathrm{OH})_{2}\right]$ ในบรรยากาศทั่วไปคงอยู่ได้ (stabilize) ไม่เปลี่ยไปไป็น ZnO อย่างรวดเร็วนั้นเป็นการเพิมความต้านททนต่อการกัด กร่อนได้ Fe ก็เป็นธาตุอีกตัวหนึ่งซึ่งถูกน่ำมใช้ในการ เคลือบ Zn -alloy ด้วย แต่สันนิษฐานกันว่านเน่องจาก ion ของ Fe ที่มีอยู่ใน ZnO นันลดการน่ไไฟฟ่าของ ZnO อันเป็นกรรลดการกัดกร่อนให้ช้าลงได้ กรรเคลือบ Zn alloy ด้วยไฟฟ้ที่พัฒนในญี่ปุ่นมีหลยยแบบด้วยกันคือ

1. พวกที่เคลือบเพียงชันเดียว เช่น $\mathrm{Zn}-\mathrm{Ni}$ alloy, Zn -Fe alloy, $\mathrm{Zn}-\mathrm{Mn}$ alloy, $\mathrm{Zn}+$ trace $\mathrm{Co}+$ trace

Cr alloy
2. พวกที่เคลือบเป็น 2 ชั้น เช่น $\mathrm{Zn} / \mathrm{Zn}-\mathrm{Ni}$, $\mathrm{Zn}-\mathrm{Fe} 2$ ชั้น, $\mathrm{Zn}-\mathrm{Fe} / \mathrm{Zn}-\mathrm{Ni}$ เป็นต้น

การเคลือบ Zn -alloy ด้วยไฟฟ้าที่ทำกันมากเป็น mร์ชิโลหะใน group ของเหล็ก ($\mathrm{Fe}, \mathrm{CO}, \mathrm{Ni}$) เป็นธตตุ ผสมและการเคลือบโลหะใน group ของเหล็กร่วมกับ zn ด้วยไฟฟ้านั้น กลไกของการเคลือบเกิดขึ้นอย่างเป็น ลักษณะผิดปกติ (anomalous) กล่วคือ โลหะที่ noble น้อยกว่า ซึ่งในที่นี้คือ Zn เกะบน cathode ได้มกกกว่า กรฟของรูป 1 ซึ่งแสดงความสัมพันธ์ระหว่างปริมาณ ของโละะที่ noble น้อยกว่าในชั้นเคลือบกับความหนาแน่นของกระแสไฟฟ้ทท่ใช้เช้คลือบนั้น แสดงถึง anomalous codeposition นี้ กรฟรูปูนี้สมารณแบ่งออกเป็น 3 ส่วน ดังนี้ คือ ส่วนที่ 1 เป็นส่วนที่ปริมาณของโลหะที่ noble

รูปที่ 1 ความสัมพันธ์ทั่วไประหว่างปริมาณโลหะที่เคลือบกับความ หนาแน่น กระแสไฟฟ้าที่แสดง anomalous codeposition

น้อยกว่า (คิดเป็น \% กับปริมาณโลหะทั้งหมด) ในชั้น เคลือบน้อยกว่าปริมาณของโลหะที่ต่ำกว่าในอ่างชุบ (bath) และเป็นแบบ normal codeposition ในระหว่างส่วน ที่ 1 กับส่วนที่ 2 มีการเปลี่ยนแปลงอย่างกะทันหันของ ปริมาณโลหะที่ noble ต่ำกว่าเกิดขึ้น โดยมีปริมาณเพิ่ม
 noble ต่ำกว่าในอ่างชุบ It ซึ่งเรียกว่า transition current density นั้น มาจากจุดตัดของเส้น curve กับค่า P_{B} ซึ่งหมายถึงว่า หากทำการเคลือบที่ความหนาแน่นกระแส ไฟฟ้านี้จะได้ปริมาณของโลหะที่ noble ต่ำกว่าในชั้น เคลือบเท่ากับในอ่างชุบ ส่วนที่ 2 เป็นส่วนที่ปริมาณของ โลหะที่ noble ต่ากว่าในชั้นเคลือบมากกว่าในอ่างชุบ และเป็นแบบ anomalous codeposition ช่วงความ หนาแน่นกระแสไฟฟ้าที่เกิดสภาพเช่นนี้ค่อนข้างกว้าง โดย ที่ไม่ทำให้เกิดการเปลี่ยนแปลงต่อปริมาณโลหะที่ noble ต่ากว่าในชั้นเคลือบมากนัก ในส่วนที่ 3 ซึ่งมีความหนาแน่นกระแสไฟฟ้าสูขึ้นอีกนั้น ปริมาณโลหะที่ noble ต่ำกว่าในชั้นเคลือบกลับลดลงเล็กน้อย สาเหตุของการ เกิดลักษณะ anomalous codeposition นั้น mechanism ที่เป็นที่เชื่อถือกันสันนิษฐานว่า ในระหว่างเคลือบ Zn alloy ด้วยไฟฟ้าได้เกิดชั้นฟิล์มของ $\mathrm{Zn}(\mathrm{OH})_{2}$ ขึ้น บนผิวที่ถูกเคลือบ ท่ใให้ ion ของ Zn^{+2} สามารถผ่าน ชิ้นนี้ได้ง้าย ในขณะที่ ion ของโลหะที่ noble มากกว่าจะ ผ่านชิ้น $\mathrm{Zn}(\mathrm{OH})_{2}$ นี้ได้ยาก จึงทำให้ปริมาณ Zn ในชั้น เคลือบมีมากกว่าโลหะที่ noble มากกว่า (รูปที่ 2)

รูปที่ 2 mechanism การเคลือบ Zn - Fe alloy

รูปที่ 3 แสดงผลของ pH ต่อบริมาณ Fe ในชั้นเคลือบ

ปริมาณของโลหะที่ noble มากกว่าใน Zn alloy ที่จะสามารถป้องกันการกัดกร่อนได้ดีแตกต่างกันตาม ธาตุผสมที่ใช้ เช่น ใน $\mathrm{Zn}-\mathrm{Ni}$ alloy ควรมี Ni ประมาณ 11-14\% (รูปที่ 6) ใน $\mathrm{Zn}-\mathrm{Fe}$ alloy ควรมี Fe ประมาณ $15-25 \%$ เป็นต้น mechanism ของการป้องกันการกัด กร่อนได้ดีขึ้นนั้น ยังไม่เป็นที่เข้ใจกันชัดเจน ตัวอย่าง เช่น กรณี mechanism ของ $\mathrm{Zn}-\mathrm{Ni}$ alloy ที่ต้านทาน การกัดกร่อนได้ดีกว่าการเคลือบด้วยสังกะสีนั้นยังเป็น ที่ถกเถียงกันดังนี้คือ

1. Corrosion product ที่เกิดจากการกัดกร่อนนั้น กลายเป็นชั้นฟิล์มของ $\mathrm{Zn}(\mathrm{OH})_{2}$ ที่มีความนำไฟฟ้าต่า และชั้นฟิล์มหุ้มชั้นเคลือบอยู่ ทำให้ปฏิกิริยา cathodic ซึ่งเป็นการ reduce O_{2} นั้น ถูกหน่วงเหนี่ยวให้ช้าลง ท่าให้เกิดการต้านทานการกัดกร่อนได้มากขึ้น
2. Zn ถูกกัดกร่อนออกไปก่อน และ corrosion product ที่เกิดขึ้นแทรกอยู่ในช่วงระหว่าง crack ชั้น เคลือบที่เมื่อ Zn ถูกกัดกร่อนออกไปและมี Ni (คิดเป็น \%) สูงขึ้น รวมกับ corrosion product ของ Zn นี้ กลายเป็นชั้นป้องกัน (protection layer) ขึ้น
3. การกัดกร่อนที่เกิดขึ้นประสานกับ internal residual stress ก่อให้เกิด microcrack ตามชั้นเคลือบ ซึ่งทำให้เนื้อที่ของ cathode ถูกกระจายออกเป็นส่วน ๆ ไม่เกิดการกัดกร่อนเฉพาะส่วนขึ้น เป็นการลดการกัด กร่อนให้ช้าลง

ในการเคลือบ Zn -alloy ด้วยกระแสไฟฟ้านี้ เงื่อนไข ของการเคลือบ (plating conditions) ซึ่งก็คือความ หนาแน่นกระแสไฟฟ้า, pH ของสารละลาย, อุณหภูมิ, อัตราการไหลของสารละลายในอ่างเคลือบมีผลในการ เปลี่ยนแปลงปริมาณโลหะชั้นเคลือบ ดังแสดงในรูปที่ 3 และ 4 สำหรับการเคลือบ $\mathrm{Zn}-\mathrm{Fe}$ alloy เข้าใจกันว่า เงื่อนไขของการเคลือบที่ช่วยให้เเิดชั้นฟิล์มของ $\mathrm{Zn}(\mathrm{OH})_{2}$ ท่าให้ปริมาณ Fe ในชั้นเคลือบลดลง และเงื่อนไขที่ท่ให้ ชั้นฟิล์มนี้ละลายไปก็จะทำให้ Fe ในชั้นเคลือบเพิมขึื้น เช่นการเพิ่มขึ้นของอุณหภูมิ หรืออัตราการไหลของสาร ละลาย (ความเร็วของสารละลายที่ไหลผ่านผิว cathode) ทำให้ ion ของ Zn^{+2} เข้าหา cathode มากขึ้น และเกิด ขึ้น $\mathrm{Zn}(\mathrm{OH})_{2}$ มากขึ้น ทำให้ Fe ในชั้นเคลือบลดลง เป็นต้น นอกจากนี้ปริมาณโลหะในอ่างที่แตกต่างกันก็ให้ ปริมาณโลหะในชั้นเคลือบและส่วนผสมของโลหะในอ่าง เคลือบให้เหมาะสมก็จะสามารถเคลือบให้ได้ปริมาณโลหะ ในชั้นเคลือบอย่างที่ต้องการได้

การเคลือบ Zn -alloy ด้วยกระแสไฟฟ้าที่ใช้แทน eletrogalvanize นั้น แต่ละแบบก์ให้ข้อดีที่แตกต่างกัน บ้างคือ พวกที่เคลือบเพียงชั้นเดียวนั้น ส่วนใหญ่เพื่อ เพิ่มความต้านทานต่อการกัดกร่อนให้มากขึ้น สำหรับ $\mathrm{Zn}-\mathrm{Fe}$ alloy นั้น เพื่อให้ใช้งานได้เทียบเท่า หรือดีกว่า พวก galvanneal* ส่วนพวกที่เคลือบ 2 ชั้นนั้น ชั้นนอก เคลือบให้บางเพื่อให้สีเกาะได้ดี ส่วนชั้นในเคลือบให้หนา

รูปที่ 4 แสดงผลของอัตราการไหลของสารละลายและอุณหภูมิ ต่อปริมาณของ Fe ในชั้นเคลือบ

รูปที่ 5 แสดงความสัมพันธ์ระหว่างปริมาณ Ni ในชันเคลือบกับ ในอ่างเคลือบ

รูปที่ แสดงผลของบริมาณ Ni ในชั้นเคลือบต่อความต้านทาน กรรัดดกร่อน

ขึ้นเพื่อป้องกันการกัดกร่อน เช่น $\mathrm{Zn} / \mathrm{Zn}-\mathrm{Ni}$ นั้น ชั้น นอกที่เป็นชั้นสังกะสี เคลือบด้วยน้ำหนัก $3 \mathrm{~g} / \mathrm{m}^{2}$ เพื่อ ให้การเกาะของสีพวก cathodic electrodeposited primer ดีขึ้น ส่วน $\mathrm{Zn}-\mathrm{Fe} / \mathrm{Zn}-\mathrm{Ni}$ หรือ $\mathrm{Zn}-\mathrm{Fe} 2$ ชั้นนั้น ชั้นนอกที่เป็น $\mathrm{Zn}-\mathrm{Fe}$ alloy ที่มีปริมาณ Fe อยู่สูง (75$85 \%$) ถูกเคลือบด้วยน้ำหนัก $3-4 \mathrm{~g} / \mathrm{m}^{2}$ นอกจากทำให้ สีเกาะได้ดีขึ้นแล้ว ยังแก้ปัญหาที่เป็นหลุม (craterform) จากการเคลือบสีแบบ cationic ด้วย สำหรับชั้นในที่เป็น $\mathrm{Zn}-\mathrm{Ni}$ (เคลือบด้วยน้ำหนัก $16 \mathrm{~g} / \mathrm{m}^{2}$) หรือ $\mathrm{Zn}-\mathrm{Fe}$ (เคลือบด้วยน้ำหนัก $20 \mathrm{~g} / \mathrm{m}^{2}$) นั้น เพื่อป้องกันการ กัดกร่อน และการเคลือบ 2 ชั้นนี้ก็จะสามารถป้องกันทั้ง perforation corrosion** และ cosmetic corrosion*** ได้ดี

* galvanneal คือการเคลือบด้วยสังกะสี แล้วทำ heat treat เพื่อให้ชั้น Zn ที่เคลือบ diffuse ซึ่งกันและกัน กับชั้น base metal เพื่อก่อเป็น alloy ขึ้น เหล็กกล้าที่ทำ galvanneal นี้ทำให้การเคลือบสี (paintability) และการเชื่อม ดีขึ้น แต่มีปัญหาของชั้นฟิล์มแบบเป็นหลุม (craterform paint film defect) ระหว่างการเคลือบสีด้วย cationic electropainting
** perforation corrosion เป็นการกัดกร่อนจากด้านในของบริเวณที่สีเข้าถึงยาก และมีน้ำ, โคลน, เกลือหรือ อื่น ๆ เกาะพอกพูนอยู่
*** cosmetic corrosion เป็น defect ที่ทำให้ดูไม่สวยงาม อาจเกิดจากรอยขูดขีดหรืออื่น ๆ จนกระทั่งท่าให้ ชั้นฟิล์มของสีหลุดลอกออก

