Synthesis of CaCu₃Ti₄O₁₂ utilizing eggshell waste as a calcium source: Structure, morphology, and dielectric properties

Akhiruddin MADDU¹, Habiburahmat YULWAN¹, Irmansyah IRMANSYAH¹, Ahmad Sofyan SULAEMAN², and Permomo Adi PUTRO²

¹ Department of Physics, IPB University, Jl Meranti Gedung Wing S, Kampus Dramaga, Bogor 16680, Indonesia
² Department of Physics Faculty of Science, Universitas Mandiri, Subang, West Java, Indonesia

*Corresponding author e-mail: akhiruddin@apps.ipb.ac.id

Abstract

Calcium copper titanate (CaCu₃Ti₄O₁₂, CCTO) has been synthesized utilizing eggshell waste as a source of calcium through the hydrothermal route, followed by annealing treatment at temperatures 950°C and 1050°C. The sample with annealing temperatures of 950°C and 1050°C is named CTO-A and CTO-B, respectively. The structure, microstructure, and dielectric properties of CCTO samples were investigated. The X-ray diffraction analysis results confirmed that the pure phase of CCTO has been successfully synthesized as identified in the diffraction pattern. The average crystallite size of CCTO is quite large due to annealing at high-temperature. The morphology of CCTO by electron microscopy investigation showed the grains tend to agglomerate as the annealing temperature increases due to the solid-state diffusion. Dielectric property investigation showed the CCTO samples have a high dielectric constant at low frequencies and decrease with increasing frequency. Sample CTO-A annealed at 950°C has a higher dielectric constant than sample CTO-B annealed at 1050°C, otherwise, it has a lower tangent loss than the sample CTO-B.

1. Introduction

Studies on the properties of calcium-copper-titanate (CaCu₃Ti₄O₁₂, CCTO) have been progressing very rapidly in recent decades, and it is because of its unique characteristics and promising technological applications. CCTO is well known as a dielectric material with high relative permittivity or dielectric constant and low dielectric loss, which is called giant dielectrics material [1-4]. Dielectric properties of CCTO are a characteristic that is most studied and investigated to explore its potential applications in electronics technology, including in energy storage devices [5], capacitors [6], gas sensors [7], random access memory [8], and microwave devices [9]. CCTO is also used as a photoanode for photocatalysis and photoelectrocatalysis in solar energy conversion [10]. Despite these significant advances, CCTO's technological applications are limited by its high dielectric loss, which is linked to its grain boundary conductivity [11]. Dielectric permittivity is directly proportional to dielectric loss, which is related to leakage current [12].

Various methods have been developed to synthesize CCTO, each of which has its advantages and disadvantages. The solid-state reaction is a simple method that is most often performed to synthesize CCTO because of easy to be carried out [13-16]. However, in the solid-state reaction, it is difficult to control the crystal phase and the homogeneous microstructure of CCTO. On the other hand, the electrical properties of dielectric ceramics can be improved when these ceramics have a homogeneous microstructure and a pure crystal phase. The sol-gel method is also commonly used to synthesize CCTO, but this method uses more reagents and complex routes than other methods [6,7,17-20]. In addition, other synthesis methods have also been developed to synthesize CCTO, including liquid-phase annealing [21], co-precipitation [22], microwave-assisted process [23], and hydrothermal route [24]. The hydrothermal method has advantages over other methods for various reasons, such as a homogeneous granularity and high crystallinity of produced powder [25].

Nowadays, CCTO is mostly synthesized utilizing commercial metal salts [18,26,27], metal oxides [28-30], and metalorganics [31-33] as starting materials. An alternative source of calcium to synthesize CCTO can utilize natural materials containing high calcium, such as eggshells. High calcium content in calcium carbonate (CaCO₃) compounds makes eggshells a commodity that has the potential as a calcium source to synthesize calcium-based dielectric material including CaTiO₃ [34-36] and Ca₁₀(PO₄)₆(OH)₂ [37-39]. Utilizing eggshells as calcium sources to synthesize CCTO has not yet been reported. The utilization of eggshell waste as a source of calcium in synthesizing CCTO has advantages, including reducing the cost of production and minimalizing the waste's environmental impact [40].

In this study, the eggshell waste was utilized as a calcium source to synthesize giant dielectric material CCTO. Synthesis of CCTO utilizing eggshell waste as a calcium source is still rarely done before. The use of eggshell waste is aimed at reducing the environmental impact it causes and producing functional materials that will add added value. In this work, CCTO was synthesized by the hydrothermal
method, where the reaction occurs in a hydrothermal reactor under high pressure, then proceed with annealing treatment to produce CCTO crystals. The effect of annealing treatment on crystal properties, microstructure, and dielectric properties of produced CCTO samples was studied. Specifically, the purity of the phase was investigated, and lattice parameters, crystal size, and grain interface were also investigated due to annealing treatment and its effect on the dielectric constant and dielectric loss (tan δ) of CCTO samples.

2. Experimental procedures

2.1 Preparation of CaCO₃ from eggshells

Eggshells collected from cooking wastes were washed with distilled water to remove macro contaminants, then dried in air. Dry eggshells were calcined at 800°C for 5 h in a furnace with 5°C·min⁻¹ heating rates. The product of the calcination process is ground in a mortar by pestle to obtain white CaCO₃ powder.

2.2 Synthesis of CCTO

CCTO is prepared through a three-stage process. CCTO was synthesized from three starting materials; namely, CaCO₃ powder derived from eggshell, Cu(NO₃)₂, and TiO₂ powder (Degussa P25). First, CaCO₃ (1.14 g), Cu(NO₃)₂ (4.83 g), and TiO₂ powders (1.59 g) were mixed and dissolved in 100 L of NaOH (0.1 M) solution. The mixed solution was continuously stirred at 1000 rpm for 30 min by a magnetic stirrer, then poured into the autoclave to be processed via the hydrothermal treatment. The hydrothermal treatment was carried out by heating the autoclave at 250°C for 24 h to achieve a high pressure within the reactor. The product of the hydrothermal treatment is a solution with brown precipitate. The precipitate was washed with the alcohol solution (97%) and distilled water, and this step was carried out three times alternately. The precipitate was filtered and dried in an air atmosphere at a temperature of 80°C to obtain dry CCTO powder. Second, the brown powder was calcined at 900°C in a furnace for 8 h, then ground in a mortar by pestle to obtain a finer powder. Finally, CCTO powder was divided into two with the same weight and formed into pellets with 1.21 cm diameter and 0.23 cm thickness. Two obtained pellets were annealed at 950°C and 1050°C for 12 h in a furnace. The sample with 950°C and 1050°C is named CCTO-A and CCTO-B, respectively. These annealed temperatures triggered a chemical reaction as shown in equation (1) on the resulting CCTO:

\[
\text{CaCO}_3 + 3\text{CuO} + 4\text{TiO}_2 \rightarrow \text{CaCu}_3\text{Ti}_4\text{O}_{12} + \text{CO}_2 \quad (1)
\]

2.3 Characterization of CCTO

The CCTO samples characterized their crystal properties, microstructure, and dielectric properties. Crystal properties were investigated by X-Ray diffraction analysis using the GBC Emma (enhanced multi-materials analyzer) X-ray diffractometer (XRD). The X-ray diffractogram was analyzed to investigate the crystal properties of CCTO samples, including their crystal phase, lattice parameter, and average crystallite size (ACS). The surface morphology of CCTO was taken using a scanning electron microscope (SEM) then the microstructure was explored, including grain distribution and inter-grain diffusion. Investigation of dielectrics properties of CCTO was carried out by using LCR Meter (Hioki Hi-Tester 3522-50) to obtain capacitance-frequency curves. Capacitance value was measured in the frequency range at 10² Hz to 10⁴ Hz at an oscillation voltage of 100 mV and room temperature, then the dielectric constant (relative permittivity) and dielectric loss (tangent loss) in the frequency range was determined.

3. Results and discussion

3.1 Crystal properties

The XRD analysis is conducted to ensure the crystal phase, lattice parameters, and average crystallite size (ACS) of CCTO samples annealed at different temperatures, 950°C (CCTO-A) and 1050°C (CCTO-B). The X-ray diffractogram of CCTO-A and CCTO-B is shown in Figure 1. Based on the diffraction pattern, both samples have a pure phase of CCTO crystal, there were no other phases originating from starting materials such as CaO from eggshell, CuO, and TiO₂. Also, there are no secondary phases formed, such as CaTiO₃, CuO, and Cu₂O, coming from the reaction process in each synthesis step. These have been confirmed on major diffraction peaks that have hkl values (211), (220), (310), (222), (321), (400), (411), (332), (442), and (440), respectively. The diffraction peaks match to the cubic-perovskite structure of CCTO corresponding to JCPDS card no. 75-2188 [41]. These results confirm that CCTO formation can effectively occur in the temperature range from 850°C to 1120°C as in previous studies [18,42].

Figure 1. X-Ray diffractogram of CCTO samples annealed at 950°C and 1050°C.

<table>
<thead>
<tr>
<th>Samples</th>
<th>FWHM (rad)</th>
<th>ACS (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCTO-A</td>
<td>0.00402</td>
<td>377.545</td>
</tr>
<tr>
<td>CCTO-B</td>
<td>0.00598</td>
<td>380.414</td>
</tr>
</tbody>
</table>

J. Met. Mater. Miner. 32(3). 2022
Meanwhile, there is no significant contrast between diffraction patterns of CCTO-A and CCTO-B samples, except the diffraction peaks of CCTO-B (annealed at 1050°C) are higher than CCTO-A (annealed at 950°C) peaks. The lattice parameters of CCTO samples were calculated by using Cohen’s method [43]. CCTO have a cubic-perovskite crystal structure with parameter values \(a = b = c \). The calculation results found the lattice parameters were 7.425 Å and 7.455 Å for CCTO-A and CCTO-B, respectively. The lattice parameter slightly increased with increasing temperature from 950°C to 1050°C. Increasing the annealing temperature possibly results in the atomic level diffusion that affects the stretching of the distance between the atoms and enlarges the lattice parameters [18,42]. Therefore, there is a slight increase in lattice parameter due to the increasing annealing temperature.

Furthermore, the average crystallite size (ACS) of CCTO samples was determined using Scherrer method based on values of Full-Width at Half Maximum (FWHM) for each peak of CCTO samples in the diffraction pattern. Debye-Scherrer’s formula is given by equation (2) as follows [44]:

\[
D = \frac{0.9 \lambda}{\beta \cos \theta}
\]

where \(D \) is the ACS value, \(\lambda \) is the wavelength of X-ray from copper as an X-ray source \((\lambda_{Cu} = 1.5406 \, \text{Å}) \), \(\beta \) is the FWHM value (in radian) from peak widening, and \(\theta \) is the diffraction angle. The calculation results of the ACS value are summarized in Table 1. The annealing results of the ACS value are significantly affected by the FWHM value, so which also affected the ACS values of CCTO. Increasing the annealing temperature resulted in the diffraction pattern becoming narrower; thus, the FWHM value was smaller, resulting in the ACS value being larger. Generally, the ACS value of CCTO is greater than 300 Å, which corresponds to a sharp and narrow diffraction peak. The relatively large ACS value is due to the high annealing temperature, this is because the distance between the atoms in the crystal expands [44].

3.2 Morphology

The surface morphology images of the CCTO were recorded using the scanning electron microscope (SEM) apparatus. Figure 2 shows the SEM images of the surface morphology of CCTO samples (CCTO-A and CCTO-B). In general, CCTO samples have a microstructure with interconnected grains. This is possible because the heating temperature is quite high which results in solid diffusion in the CCTO samples so that the grains coalesce.

Sample CCTO-A annealed at 950°C has a microstructure with granules that start to coalesce but still show a cube-shaped grain with an average size of around 0.3 μm. This coalescence of grains occurs through diffusion between grains due to the high temperature of the annealing treatment. The image of morphology shows the microstructure with the grains starting to merge with each other, although the grains can still be identified. This phenomenon usually occurs in the material processed at high temperatures. It was reported that the morphology changed significantly with different annealing temperatures [45].

The solid-state diffusion was more evident in the sample CCTO-B annealed at 1050°C, in which the grains almost completely fused in the sample, and even tended to start to melt. In the image it appears that almost all the grains have coalesced, the inter-grain boundary mostly cannot be observed, although some grains still have grain boundaries. In the CCTO-B sample, the stronger inter-grain diffusion has been occurred due to the higher temperature in heating treatment. Consequently, the grains more merged even mostly have been melted.

3.3 Dielectric properties

The study of dielectric properties is based on an interaction between the electric field and materials. These interactions result in polarization of the electric charges in order to compensate for the electric field applied to the material, that is the positive and negative charges move in opposite directions. Each of polarization mechanism possesses its own limiting frequency or depends on the frequency.

The properties of dielectric materials are characterized by their relative permittivity, dielectric loss, and dielectric strength. Permittivity is a material property that affects the Coulomb force between two point charges in the material. The relative permittivity \((\varepsilon_r) \) or dielectric constant \((\varepsilon) \) is the factor of decreasing the electric field between charges relative to a vacuum. The relative permittivity \((\varepsilon_r) \) is defined as the ratio of the permittivity of material \(\varepsilon(\omega) \) to the permittivity of vacuum \((\varepsilon_0) \), as follow

\[
\varepsilon_r(\omega) = \varepsilon(\omega)/\varepsilon_0
\]

where \(\varepsilon(\omega) \) is the complex frequency-dependent permittivity of the material, and \(\varepsilon_0 \) is the vacuum permittivity \((8.854 \times 10^{-12} \, \text{F} \cdot \text{m}^{-2})\). Relative permittivity is a dimensionless number that is in general complex-valued; its real and imaginary parts are denoted as

\[
\varepsilon_r(\omega) = \varepsilon'(\omega) - i\varepsilon''(\omega)
\]

where \(\varepsilon'(\omega) \) and \(\varepsilon''(\omega) \) are real and imaginary parts of the complex permittivity \(\varepsilon(\omega) \) as a function of frequency. While the dielectric loss tangent is defined as

\[
	an \delta = \varepsilon''/\varepsilon'
\]

Dielectric properties were studied to investigate the polarization ability of CCTO under an applied electric field at room temperature. Figure 3 depicts the relative permeability \((\mu) \) of CCTO-A and CCTO-B dependent on frequency. In general, the relative permittivity of CCTO samples is quite high, above 3000, even CCTO-A sample heated at 950°C have relative permittivity above 25,000 at low frequencies.
The authors thank the operators of the Nanotechnology Laboratory, Center for Agricultural Postharvest Research and Development, Ministry of Agriculture of the Republic of Indonesia for their facilitation for XRD and SEM characterization.

References

