โครงการสัมมนาและควบคุม คุณภาพดินขาวที่เหมาะสม

ผู้ช่วยศาสตราจารย์ ดร. ขวัญชัย ถี่เผ่าพันธุ์ หัวหน้าภาควิชาวิศวกรรมเหมืองแร่และธรณีวิทยา คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

1. บทน้ำ

การขยายตัวของอุตสาหกรรมที่ใช้ดินขาวตลอดระยะ เวลาที่ผ่านมา ทำให้การใช้ดินขาวมีปริมาณเพิ่มมากขึ้น และ มีอนาคตที่ค่อนข้างชัดเจน การขยายตัวของอุตสาหกรรม ที่ใช้ดินขาวและอุตสาหกรรมการผลิตดินขาวเป็นไปอย่าง ไม่ได้สัดส่วน โดยอุตสาหกรรมผู้ใช้มีความก้าวหน้าในระดับ ที่รวดเร็ว ในขณะที่การผลิตดินขาว ยังต้องเดินตามอย่างมี ขีดจำกัด ทำให้มีช่องว่างระหว่างการผลิตและการใช้อุตสาหกรรมที่ใช้ดินขาวเพื่อการผลิตผลิตภัณฑ์ที่มีคุณภาพดีเพื่อ การแข่งขันและส่งออก ต้องการวัตถุดิบที่มีคุณภาพดีสม่า เสมอ และเพียงพอในราคาที่สมเหตุสมผลอยู่ตลอดเวลา ผู้ผลิตวัตถุดิบก็ย่อมที่จะผลิตวัตถุดิบที่เป็นที่ต้องการ และ ได้คุณภาพที่เหมาะสมกับคุณลักษณะธรรมชาติของดินขาว จากแหล่งโดยค่าใช้จ่ายในการผลิตต่อหน่วยที่ให้ผลตอบแทน ที่คุ้มทุนและสามารถดัดแปลงหรือใช้เทคโนโลยีให้เหมาะสม กับลักษณะเฉพาะของแหล่งนั้น ๆ

ความต้องการดินที่จะเพิ่มมากขึ้น ทำให้ประสิทธิภาพ การผลิต และคุณภาพของดินมีความสำคัญมากยิ่งขึ้น การ เร่งรัดอัตราการผลิตโดยรักษาประสิทธิภาพและคุณภาพ ที่ดีพอทำให้ต้องการการปรับปรุงดัดแปลงกระบวนการที่มี สมรรถนะและให้ค่าใช้จ่ายที่คุ้มทุน

การมีแหล่งดินที่มีศักยภาพ และคุณลักษณะพื้นฐาน ที่แตกต่างกัน และการเร่งเร้าให้อุตสาหกรรมการผลิตดินขาว พัฒนาประสิทธิภาพการผลิตและรักษาระดับคุณภาพรวมทั้ง การผลิตดินขาวอย่างเหมาะสม โดยมีปริมาณการเก็บดินได้ มากที่สุด เป็นวิธีการหนึ่งที่จะสามารถทำให้ อุตสาหกรรม ต้นสายและปลายสายมีสภาพที่พอไปกันได้พอควร และเป็น การนำดินขาวขึ้นมาใช้ให้เกิดประโยชน์สูงสุด ตามคุณค่า ของดินเอง

2. วัตถุประสงค์

วัตถุประสงค์สำคัญของโครงการที่อาจสรุปได้ คือ

- 1. ให้มีการผลิตดิน มีคุณภาพที่เหมาะสมกับคุณลักษณะ พื้นฐานของดินในแหล่ง
- 2. ปรับปรุงกระบวนการผลิตให้มีประสิทธิภาพเพิ่มขึ้น และมีค่าใช้จ่ายต่อหน่วยที่เหมาะสม คุ้มทุน
- 3. รักษาระดับคุณภาพให้เป็นที่ยอมรับได้ และสม่ำ เสมอ

3. โครงการ

โครงการดังกล่าวนี้ เป็นโครงการวิจัยและพัฒนาที่ได้ ร่วมมือกัน โดย 3 สถาบันหลักดังนี้ คือ

> จุฬาลงกรณ์มหาวิทยาลัย มหาวิทยาลัยเชียงใหม่ มหาวิทยาลัยสงขลานครินทร์

การดำเนินการ พื้นฐาน

การดำเนินการวิจัยในระยะเวลาแรกได้เน้นหนักใน การศึกษาด้านแรวิทยาของดินขาวในแหล่งต่าง ๆ เช่น ดิน ระนอง ดินปราจีนบุรี ดินนราธิวาส ดินลำปาง ดินอุตรดิตถ์ ซึ่งมีคุณลักษณะที่แตกต่างกันออกไป

นอกเหนือจากคุณสมบัติทางแรวิทยาแล้ว การกระจาย ของขนาดของดิน และคุณสมบัติด้านการใช้ประโยชน์ นับว่า เป็นคุณลักษณะที่สำคัญประการหนึ่งของดิน ซึ่งดินจากแต่ ละแหล่งเหมาะสมที่สุดกับการใช้ประโยชน์ในช่วงระดับหนึ่ง เท่านั้น

ประสิทธิภาพกระบวนการ

การศึกษาประสิทธิภาพกระบวนการในแหล่งใด ๆ

ทำให้สามารถจำแนกลักษณะปัญหาและขืดจำกัดได้ชัดเจน เกณฑ์ที่สำคัญที่ต้องนำมาพิจารณา ได้แก่

- ปริมาณการเก็บดินได้ (Recovery) (ผลกระทบ ต่อค่าใช้จ่ายต่อหน่วย และการสูญเสียดิน)
- เกณฑ์คุณภาพเหมาะสมที่สม่ำเสมอ (ขึ้นอยู่กับ ลักษณะการใช้งานของดิน)
- เกณฑ์ทางเทคนิคอื่น ๆ เช่น Cut Size และ Imperfection ของการคัดขนาด เป็นต้น

ดังนั้น การเพิ่มประสิทธิภาพการผลิตในกระบวนการ จึงอาจกระทำได้หลายทางขึ้นอยู่กับลักษณะของแหล่งดิน

- การทำเหมืองแบบเฉพาะเจาะจง (Selectivity) ที่ ทำให้มีการผลิตที่สามารถรักษาคุณภาพให้ดียอมรับได้ และ มีค่าใช้จ่ายต่อหน่วยต่ำโดย นำดินขึ้นมาใช้ประโยชน์ได้มาก ที่สุด
- ขยายอัตราการผลิตดินเต็มที่ ที่ให้ประสิทธิภาพ การเก็บแร่และคุณภาพที่ดีโดยปรับปรุง ดัดแปลงกระบวน การบางส่วน
- การควบคุมการคัดน้ำทิ้ง การกรอง หรือกำจัดน้ำ ในอัตราที่เหมาะสมที่ให้ความชื้นต่ำ ลดค่าใช้จ่ายในการขนส่ง เป็นต้น

5. การทดสอปรับเปลี่ยนกระบวนการ

เกณฑ์ที่สำคัญ ได้แก่ ปริมาณการเก็บดินได้ (Recovery) และคุณภาพการกระจายขนาดจะเป็นแพคเตอร์เบื้อง ต้นที่จะบ่งชี้กิจการทำงานของกระบวนการในแหล่งนั้น ๆ ดังนั้นการศึกษาทดลองวิธีการที่เหมาะสมรวมทั้งอุปกรณ์ ที่เหมาะสมในกรณีนี้ ได้แก่

- การใช้ และวิธีการใช้ไฮโดรไซโคลน โดยมีตัวแปร ที่ได้จากการออกแบบ (Design Variables) และตัวแปรใน การทำงาน (Operating Variables) ที่เหมาะสม การเปลี่ยน แปลงการใช้ไฮโดรไซโคลน ซึ่งได้มีการทดลองใช้ ในเหมือง สาธิตภาคสนามของโครงการฯ แสดงให้เห็นว่าผลที่ได้รับจาก การเปลี่ยนแปลงดีขึ้นอย่างเห็นได้ชัดเจน และเป็นที่เห็น พ้องจากผู้ใช้ด้วย (รูปที่ 3)

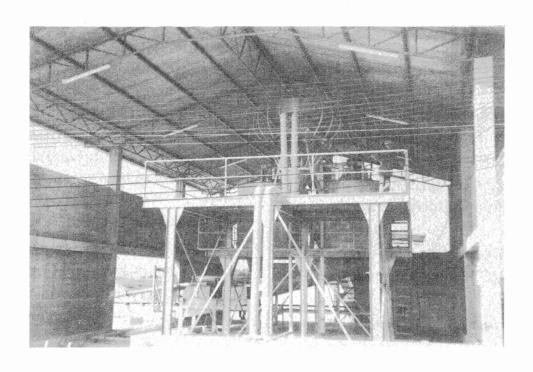
อย่างไรก็ตาม การทดลอง ทดสอบ ในด้านของสภาวะ เงื่อนไขของตัวแปรต่าง ๆ ที่ให้ผลดีที่สุด ทั้งในด้านตัวแปร การออกแบบของไฮโดรไซโคลนชุดต่าง ๆ และตัวแปรการ ทำงาน ยังต้องปรับปรุงให้ถูกต้องอีก การศึกษาทางด้านการ ทำงานของไฮโดรไซโคลนในลักษณะนี้ ได้ดำเนินการอยู่อย่าง ละเอียด โดยเฉพาะอย่างยิ่งโดยกลุ่มวิจัยพื้นที่ภาคใต้ และ กลุ่มพื้นที่ภาคเหนือ

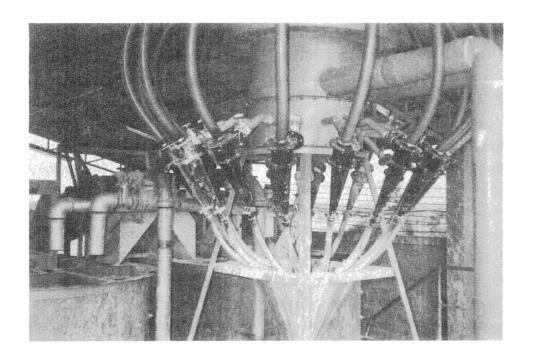
- การปรับเปลี่ยนวงจรของอุปกรณ์คัดขนาดและไฮ-โดรไซโคลน ที่ทำให้เพิ่มปริมาณการผลิต และปริมาณการ ใช้น้ำ
 - การตกตัว การฟลอกดูเลชั่น และการเกรอะ
- การกรองโดยใช้ Filter Press ขนาด โรงประลอง ที่ให้อัตราการกรองสูงสุดที่ความชื้นต่ำ
- การควบคุมปริมาณมลทิน (Impurities) โดยใช้ เทคโนโลยีเข้าช่วย เช่น
- : การใช้เครื่องแยกแม่เหล็กสูงแบบเปียก (Wet High Intensity Magnetic Separator, WHIMS)
 - : การลอยแร่ ควบคุมปริมาณมลทินบางชนิด
- : การเลือกตกตัวโดยเฉพาะเจาะจง (Selective Flocculation)
 - : การฟอกสี สำหรับดินบางส่วน เป็นต้น

โดยมีแนวคิดการวิจัย ในลักษณะสหสาขา (Multidisciplinary) ที่ต้องการความรู้ ความเชี่ยวชาญในด้านต่าง ๆ ที่เกี่ยวข้องประกอบเข้าด้วยกัน ดังนั้นในแต่ละสถาบันหลัก จะประกอบไปด้วย กลุ่มวิจัยที่มีศักยภาพในแต่ละสาขาที่ เกี่ยวข้อง คือ

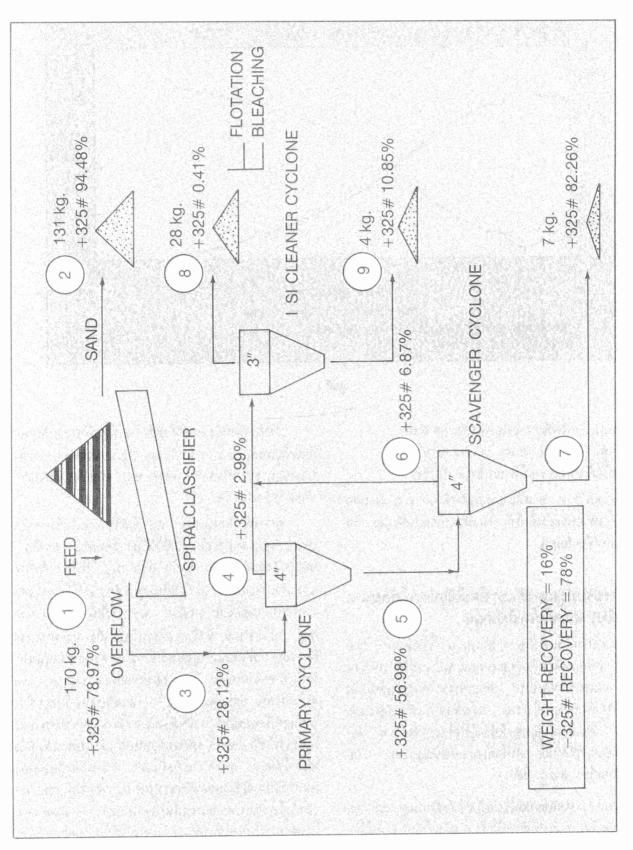
ธรณีวิทยาและแรวิทยา (Geology and Mineralogy) การทำเหมือง (Mining)

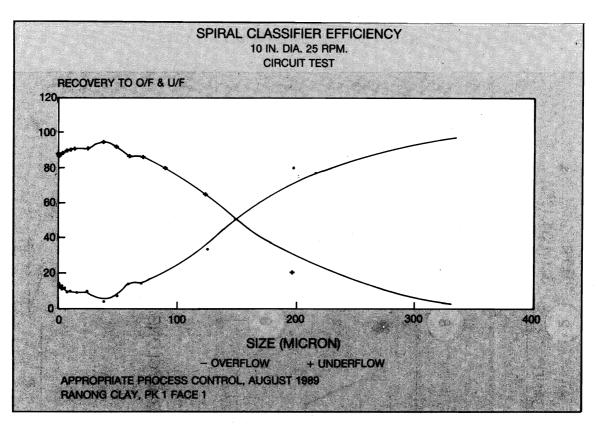
การแต่งแร่ (Mineral Processing)


การทดสอบและใช้ประโยชน์ทางด้านวัสดุ (Material Testing and Application)


การดำเนินการวิจัย ดำเนินการไปตามลำดับขั้นตอนโดยต่อเนื่องที่ได้วางแผนเอาไว้ โดยเริ่มตั้งแต่

- ศึกษาคุณลักษณะพื้นฐานของดินในด้านธรณีวิทยา และแรวิทยา รวมทั้งคุณสมบัติอื่นทางเคมี และกายภาพ
- ศึกษาสถานะทางเทคโนโลยีในการผลิตดินขาว เพื่อ จำแนกปัญหาและขีดจำกัด (State of the Art)
- วิเคราะห์ข้อมูลและการทดลอง (Analysis and Experimentation)
- ปรับปรุง พัฒนาประสิทธิภาพ รักษาคุณภาพ และ สมรรถนะของกระบวนการผลิต
 - ทดสอบภาคสนาม (Field Trials)
 - ถ่ายทอดเทคโนโลยี (Technology Transfer)


การวิจัยและพัฒนา จะกระทำในลักษณะของการประสานงานเป็นโครงข่ายงานวิจัย (Net Work) ที่มีขอบเขต รับผิดชอบที่ชัดเจน สำหรับแต่ละกลุ่มวิจัย โดยแบ่งพื้นที่ งานวิจัยที่สอดคล้องกับแหล่งดินขาวที่มีคุณสมบัติพื้นฐาน ที่แตกต่างกัน คือ


รูปที่ 1 และ 2 แสดงการใช้ไฮโดรไซโคลน ขนาดเส้นผ่าศูนย์กลาง 100 มิลลิเมตร จำนวน 16 ตัว

ฐปที่ 2

กลุ่มวิจัยพื้นที่ภาคเหนือ ลำปาง, อุตรดิตถั่ กลุ่มวิจัยพื้นที่ภาคกลาง ระนอง, ปราจีนบุรี กลุ่มวิจัยพื้นที่ภาคใต้ นราธิวาส เป็นต้น

โดยได้คาดหวังว่า การพัฒนาการผลิตดินขาวจะสามารถก่อ ให้เกิดขึ้นหรือกระตุ้นขึ้นได้ ในแหล่งการผลิตสำคัญ ใน ระยะเวลาที่ไล่เลี่ยกัน

6. การปรับปรุงแต่งดินขาวโดยใช้อุปกรณ์คัดขนาด แบบสไปราลและไฮโดรไซโคลน

แผนผังการแต่งดินขาวได้แสดงเอาไว้ในรูปที่ 1 โดย ได้ทำการทดลองทั้งในห้องทดลองและในสนามที่มีการทำงาน จริง ดินและทรายหยาบ แยกออกจากกันในขั้นต้นด้วย เครื่องคัดขนาดแบบสไปราล ส่วนล้นจากเครื่องคัดขนาด สไปราล จึงป้อนเข้าสู่ชุดของไฮโดรไซโคลนขนาดต่างๆ โดย ควบคุมตัวแปรที่สำคัญ ดังที่กล่าวมาแล้วให้เหมาะสม ทราย หยาบจากสไปราลจะถูกทิ้งไป

ส่วนล่าง (Underflow) ของไฮโดรไซโคลนชุดแรก จะ เข้าสู่ไฮโดรไซโคลนชุดที่สองเพื่อเก็บเนื้อดินซ้ำอีกครั้ง ไฮโดร-ไซโคลนที่ใช้ในชุดแรก ใช้ขนาดเส้นผ่าศูนย์กลาง 100 มิลลิ-เมตร และขนาด 75 มิลลิเมตร ในชุดที่สอง ปริมาณน้ำหนักดินที่เก็บได้ ในขั้นสุดท้ายส่วนล้นของ ไฮโดรไซโคลนขนาด 75 มิลลิเมตร ประมาณร้อยละ 16 และ ปริมาณการเก็บดินขนาด -325 เมช ตามแผนผังวงจรนี้ ประมาณร้อยละ 78

ตารางที่ 1 และรูปที่ 2 แสดงให้เห็นประสิทธิภาพของ เครื่องคัดขนาดแบบสไปราลที่ใช้ในการทดลอง จะเห็นว่า ขนาดของจุดตัด (Cut Size) หรือ d₅₀ ที่ได้จากสไปราล ประมาณ 150 ไมครอน ทั้งนี้ขึ้นอยู่กับตัวแปรที่มีผลกระทบ ต่อการทำงานของสไปราลด้วย น้ำดินที่มีเนื้อดินเก็บขนาด d₅₀ 150 ไมครอน ซึ่งมีขนาดหยาบไปจนถึง ประมาณ 250 ไมครอน เมื่อป้อนเข้าสู่ไฮโดรไซโคลนขนาด 100 มิลลิเมตร ดินที่ออกทางส่วนล้น มีขนาดละเอียดเล็กกว่า 325 เมช หรือ 45 ไมครอน ประมาณร้อยละ 97 และเมื่อผ่านเข้าไฮโดรไซ-โคลนชุดที่สองขนาด 75 มิลลิเมตร จะมีความละเอียดกว่า 45 ไมครอนถึงร้อยละ 99 ดังนั้นจะเห็นว่า ดินในส่วนล้นของ ไฮโดรไซโคลน ขนาด 100 มิลลิเมตร มีขนาดละเอียดเพียง พอสำหรับการใช้งานของดินขาวในเชรามิกส์ขนาด -200 เมช และไฮโดรไซโคลนขนาดเส้นผ่าศูนย์กลาง 75 มิลลิเมตร ก็จะสามารถนำดินขนาด -325 เมชได้ โดยอาศัยการควบคุม ที่ดีให้ได้ขนาดที่สม่ำเสมอ และมีปริมาณการสูญเสียดินน้อย ที่สุด

SPIRAL CLASSIFIER PERFORMANCE

RUNNING CODE RUN NO. SAMPLE	SPIRAL CLASSIFIER CIRCUIT 1 RAW CLAY, PK 1 FACE 1 SPIRAL	TEST	FILE	LABTEB-1
DIA. in. RPM	10 25 rpm.			
FEED RATE	25 rpm. 113.77 l/min.			
FEED %SOLIDS	19.73			
SOLID S.G.	2.7			
PULP D.	1.1418			
	%SOLIDS W/W	SOLIDS TPH.	WATER	R TPH.
	MEASURED	CALC.	CA	LC.
FEED	19.73	1.54	6.2	26
OVERFLOW	7.47	0.48	5.9	96
UNDERFLOW	78.36	1.06	0.2	29
	% WATER TO UNDERFLOW. Rf	4.66		

CALCULATION BASED ON SIZE ANALYSIS

% RECOVERY TO UNDERFLOW

% RECOVERY TO OVERFLOW

MESH			OVERFL	UNDRFL	UF.REC.	OF.REC.	FEED	WT % TO	CORR.	WT % TO
Tyler	micron	avg.size	% wt.	% wt.	calc.	calc.	calc.	UNDRFL		OVRFLOW
35	417		0.01	79.48	54.592	0.003	54.595	99.994	99.994	0.006
60	246	331.5	0.27	7.89	5.419	0.085	5.504	98.464	98.389	1.611
100	147	196.5	1.92	3.69	2.535	0.601	3.136	80.827	79.889	20.111
150	104	125.5	5.32	1.39	0.955	1.666	2.621	36.432	33.323	66.677
200	74	89	6.47	0.93	0.639	2.026	2.665	23.972	20.254	79.746
230	65	69.5	5.51	0.49	0.337	1.725	2.062	16.323	12.231	87.769
270	53	59	2.84	0.28	0.192	0.889	1.082	17.781	13.760	86.240
325	45	49	5.78	0.33	0.227	1.810	2.037	11.130	6.784	93.216
	30	37.5	2.73	0.11	0.076	0.855	0.930	8.121	3.627	96.373
	20	25	12.72	0.93	0.639	3.983	4.622	13.821	9.607	90.393
	10	15	16.53	1.14	0.783	5.176	5.959	13.140	8.892	91.108
	8	9	3.59	0.26	0.179	1.124	1.303	13.709	9.489	90.511
	6	7	5.03	0.36	0.247	1.575	1.822	13.569	9.342	90.658
	5	5.5	2.95	0.25	0.172	0.924	1.095	15.675	11.552	88.448
	4	4.5	4.46	0.36	0.247	1.397	1.644	15.042	10.888	89.112
	3	3.5	4.10	0.38	0.261	1.284	1.545	16.895	12.831	87.169
	2	2.5	5.18	0.42	0.288	1.622	1.911	15.100	10.948	89.052
	1	1.5	5.10	0.53	0.364	1.597	1.961	18.564	14.581	85.419
	0.8	0.9	1.51	0.14	0.096	0.473	0.569	16.900	12.836	87.164
	0.6	0.7	1.65	0.15	0.103	0.517	0.620	16.626	12.548	87.452
	0.5	0.55	6.32	0.48	0.330	1.979	2.309	14.281		ERR
			99.99	99.99						

68.69

31.31

แนวทางดังกล่าวได้นำไปประยุกต์ใช้ในการทำงานจริง ในการผลิตดินขาวเซรามิกส์ที่จังหวัดลำปาง โดยใช้ไฮโดร-ไซโคลนขนาดเส้นผ่าศูนย์กลาง 100 มิลลิเมตร ชุดละ 16 ตัว ต่อกัน โดยมีการป้อนน้ำดินเข้าในแนวรัศมี เพื่อ ให้มีแรงดันป้อนเท่า ๆ กัน ตัวแปรที่ใช้ในการควบคุม กระบวนการให้เหมาะสมเป็นไปตามผลที่ได้จากการทดลอง ความสามารถในการทำงานของไฮโดรไซโคลนชุดดังกล่าว เพียงพอสำหรับความต้องการสมรรถนะของเครื่องสูบ และระบบการป้อนก็ต้องออกแบบให้เหมาะสมที่จะสามารถ ปรับตัวแปรในระดับหนึ่งได้

ส่วนล้นที่ออกจากเครื่องคัดขนาดแบบสไปราล จะ ป้อนเข้าสู่ไฮโดรไซโคลนชุดดังกล่าวโดยผ่าถังพักน้ำดิน เพื่อให้สามารถปรับแรงดันและปรับปริมาณน้ำได้ ส่วนที่ออก ทางล่างของไฮโดรไซโคลนมีทรายหยาบมาก ปล่อยลงท่อไป สู่บ่อเก็บทราย พร้อม ๆ กับทรายหยาบจากเครื่องคัดขนาด เนื่องจากมีปริมาณดินละเอียดปะปนอยู่น้อย ส่วนล้นที่มี เนื้อดืนประมาณ 8-10 เปอร์เซ็นต์ โดยน้ำหนักจะเก็บไว้ใน บ่อตกดิน เพื่อรอให้ตกตัวก่อนที่จะเข้าเครื่องกรอง คัดน้ำทิ้ง

ความสามารถในการทำงานของไฮโดรไซโคลน ให้ อัตราการไหลของน้ำดินสูง และดินตกตัวได้ช้า ทำให้ไม่ สามารถระบายดินออกสู่เครื่องได้ทัน ดังนั้นถ้าหากปรับปรุง การตกตัวของดินให้มีประสิทธิภาพมากขึ้น จะทำให้สมรรถนะ ในการทำงานของทั้งวงจรสูงขึ้นอีก

ภาพถ่ายที่ 1 และ 2 แสดงให้เห็นการติดตั้งชุดไชโคลน ขนาด 100 มิลลิเมตร จำนวน 16 ตัว 1 ชุด ในการทำงาน ของโรงแต่งดินขาว ไทยเกาลิน จังหวัดลำปาง

การใช้อุปกรณ์คัดขนาดที่เหมาะสมเป็นสิ่งจำเป็นสำหรับ กระบวนการที่จะให้สมรรถนะที่ดีและการใช้ตัวแปรที่ถูกต้อง การควบคุมที่เหมาะสมก็จะให้ผลที่มีประสิทธิภาพ มีคุณภาพ ที่สม่ำเสมอ อย่างไรก็ตาม กระบวนการจะต้องมีการปรับปรุง ในรายละเอียดอยู่ตลอดเวลา ตามคุณลักษณะจำเพาะของ ดินที่ใช้

