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Abstract

The study shows that neural network is capable of predicting the change of the liquid steel

temperature during a BOF operation and transfer of the liquid steel to ladles. The forecast temperatures agree

with the actual measured values. It was found that the optimized architecture of the neural network consists of

11 inputs, 4 hidden neurons, and 1 output with learning rate and momentum of 0.01 and 0.5 respectively. The

discrepancies of the forecast model to the real values were found to be + 7°C. A model based on

thermodynamic and heat balance was also developed and was found to correlate well with the forecast model

from the neural network. Both models illustrate linear dependency of the temperature on the metallurgical and

process parameters.

Introduction

Temperature is an important parameter of
steelmaking which must be controlled to ensure
product quality. It changes drastically according to
heat transfer with surroundings and heat generated
by chemical reactions when additives and fluxes are
added.

Thermal properties of refractories and
geometry of containers affect the liquid steel
temperature. The liquid steel temperature must be
maintained above a certain value suitable for

subsequent operations such as continuous casting. To

increase its temperature, electricity-generated heat or
heat of reactions must be added to the melt.

The objective of this study is to use neural
network to predict the temperature change of the
liquid steel during steelmaking operation in a basic
oxygen furnace (BOF) and after being transferred to
a ladle.

Neural network is widely employed in
several control systems. The major advantage of this
model is that the actual or detailed mechanisms of
the operation are not required in the analysis.

Another benefit is that no assumption has been made

among the target and the influencing variables.
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It can be applied to both linear and non-linear system
which, otherwise, may be difficult or impossible to

analyzed using empirical and theoretical models.

Basic theory of multilayer neural network.
A Neural Network is an information-
processing system that has certain performance
characteristic in common with biological neural
networks . The first neural network was designed by
Warren McCulloch and Walter Pitts in 1943".
Many neural networks had been designed to solve
different complex problems. One of the most
important neural networks is the multilayer neural
network (multilayer perceptron) with
backpropagation. The basic concept of the multilayer
perceptron with backpropagation is that the weights
are adjusted from the backward of output layer into
the network to reduce the output error. The
multilayer perceptron was discovered by Rumelhart
et al in 1986". It is a high flexible modeling tool.
Multilayer perceptron consists of one input layer, one
or more hidden layer and one output layer. In each
layer consists of many processing elements, called
neurons. Number of neurons in a layer and number
of hidden layer depend on the complexity of problem
on hand. Normally one hidden layer can solve many
complex problems. Typically neurons in the same
layer behave the same manner. The function of input
neuron is receiving the input. The hidden neuron

function is transferring the input from input layer to

output layer. The function of output neuron is

calculate and present the output.The arrangement of
neurons into layers and connection patterns
betwéen layers is called the architecture of network.
The general architecture of multilayer perceptron is
shown in Figure 1.

The weighs (Wi.,- and V,, in Figure 1) are
interconnection between each neuron. The functions
of a neuron in the network can be divided into three
function, input function, activation function and
output function. The multiples between weight and

input are summed in input function as described in

equation (1).

equation (1)

W, represent the connection weight between neuron
j and neuronii.

X; represent the input of neuron j.

This sum wili be transferred to output function by

Sigmoid activation function

1
l1+e7?

f(2)=

equation (2)

A direct transfer of the activation of a neuron to its

output is employed as the output function

J
O=a=f0Q W;X,)  equation (3)
j=1

O, is the output of the neuron, a, is activatio
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The error between network output and
target output is used to adjust the weights to
minimze the global network error as defined in

equation (4).

1
E= EZ (Z,—0,)*  equation (4)
Z, is the target output value.
The new adjusted weight is defined as equation (5)
AWij= (18)(] equation (5)
QL is defined as the learning rate.

8, = (1) ZOW,; for hidden layer
5i =f (I)(Z-0) for output layer

The new weight will be used instead of the old
weight in the next repetition. All of these steps will
be repeated until the global network error is

converted to the threshold or limited error.

Data Collection and Processing Procedures

METALLURGICAL AND PROCESSING
PROCEDURES

Melt-shop data from a steelmaking plant
have been collected. One set of data (one heat)
contains 28 variables which are:

Variables number 1 to 27 are defined as
input data while variables number 28, the final

temperature, is the output. A total of 8,380 sets of

data were collected for both training and testing the
model.
DATA PRE-PROCESSING
Scaling

All of data must lie between 0 and 1
because the output of the network is calculated from
a sigmoidal activation function which ranges
between 0 and 1. Therefore, data in each group of
variables are scaled according to the corresponding

data range. A scaled value is equal to:

X'= ﬂ )
X —X_

Data for Model Training and Data for Model
Testing

The collected data were randomly divided
into tow groups : one for training and other for
testing the network model.
NEURAL NETWORK MODEL

The first step is to find the variables which
have no correlation with the output. A step called
data pruning was used to exclude these variables
from the subsequent analysis. During the repeating
iteration of learning phase, the input data with less
relative relevance to output data are cut out from the
model. After training this model, a new model with

the main influencing factors on the temperature

change, is built. These input data are listed below:
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1. Converter temperature
Tpping time

First measurement temperature in ladle
Steel weight

[%Al] in steel

Al droplet addition

Carbon addition

FeMn addition

© © N A L A W N

FeCr addition
. SiMn addition
11. CaO flux
The new model with these 11 input data
will be used for further study. Many architectures
are trained to find out the optimized model
(minimum error). Various architectures studied

the influence of the layer and the neuron number

in each layer is shown in Table 1. To compare the

learning bebavior of network different values of
learning rate and momentum were set to the
optimized architecture of network. Four values of
learning rate were varied to consider its effect.
Three values of momentum are changed to
consider its effect. Table 2 shows various of

learning rate and momentum.

TESTING
Testing of Model

The second part of input data set, which
been used in the learning phase, was used for
testing the model. Four types of error
measurements were used for testing the model.
MAE = mean absolute error
RMSE = root mean square error
MSE = mean square error

MAPE = mean absolute percent error

Table 1 Various architectures of networks for evaluating the best model

Model Number of neurons in Learning | Momentum
No Input layer Hidden layer Output layer rate
1 2
1 11 3 - 1 0.01 0.5
2 11 4 - 1 0.01 0.50
3 11 5 - 1 0.01 0.5
4 11 9 - 1 0.01 0.5
5 11 11 - 1 0.01 0.5
6 11 2 1 0.01 0.5
7 11 1 0.01 0.5
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Table 2 Various of learning rate and momentum

Model Number of neurons in Learning Momentum

No Input layer Hidden layer Output layer rate
2 11 4 1 0.01 0.5
8 11 4 1 0.1 0.5
9 11 4 1 0.5 0.5

10 11 4 1 0.9 0.5

11 11 4 1 0.02 0.1

12 11 4 1 0.01 0.9

Testing of input- hidden layer. The predicted temperature change of

The best model, which had minimum error,
was used for this testing. Data were fed into the
optimized model then the output was calculated. The
results from this testing were the results from
varying only one variable. These results are then
compared with the result from calculation of the

thermodynamic.

Result

PERFORMANCE OF NEURAL NETWORK
Results of testing model are shown in Table

3. The second model’s, architecture [11.4.1] gives

the minimum mean absolute error of 7.46°C. The

model for predicting the temperature change in

converter process during tapping and adding

addition has omne hidden layer, four neurons in

best network is shown in Figure 2. It illustrates the
relation between the actual temperature change
and the predicted temperature change. Good
correlation between actual and predicted
temperature change is obtained in the all range of
temperature drop. Slope of trend line between
actual and predicted temperature change 1is
0.9904. The standard deviation and variance of
error from [11.4.1] architecture are 6.32 and 40.05
respectively. It should be noted that this error is
made up of four other errors:

1) error in process measurement

2) error form reading values form the equipment
3) error from the accuracy of measuring

equipment

4) error from neural network
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input layer hidden layer output layer

Figure 1 General architecture of multilayer perceptron
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Figuer 2 Predicted and actual temperature change from the optimized model
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Table 3 Errors of the different networks

Model Number MAE MSE RMSE MAPE
1 7.682 103.745 10.186 12.437
2 7.457 97.577 9.878 13.280
3 7.516 98.872 9.943 13.409
4 7.824 105.373 10.235 14.421
5 8.937 129.065 11.361 13.135
6 7.671 103.989 10.198 12.357
7 7.508 99.239 9.962 13.197
8 9.026 132.640 11.517 15.619
9 7.48 98.321 9.916 13.001
10 7.956 111.634 10.566 12.85
11 9.393 149.212 12.215 14.172
12 7.593 97.433 .| 9.871 12.947

PARAMETER IN NETWORK network has too few hidden units can not learn the

Effects of number of hidden neurons
Figure 3 shows errors of model with the

number of epochs for three layers network with
different number of hidden neurons. Network with
fewer hidden neurons gives a higher error. The
network with more hidden neurons also gives higher
error and shows perturbation in learning curve.
Searching of best architecture of network
can be done only by trial and error. In this
investigation, many trials and errors had been
performed until the best architecture [11,4,1] with

error of 7.46°C was received. It was found that

training sét well. On other hand, networks with too
many hidden units tend tg memorize the training set
but cannot perform well.

This work also makes trial and error with
two hidden layer. Even though the two hidden
layers can give error of the same magnitude with
[11,4,1] but it was not chosen as the model to
predicted the temperature change. Because
increasing the hidden layer will increase the
complexity and need more ‘time for convergence of

the network.
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Figure 3 Effects of hidden neurons on the learning curve

Effect of learning rate

The effect of learning rate on the learning
behavior of network is shown in Figure 4. It can
be seen that the high learning rate will affect the
convergence of the network. The high learning
rate leads to fluctuation of the learning curve
while the use of a lower learning rate leads to a
faster convergence of the curve.

The learning rate coefficient determines
the size of the weight adjustment at each iteration
and influences the rate of convergence. The
different value of learning rates result to different
rates of convergence. A large value of learning
rate gives bigger step sizes and faster local
convergence. When learning rate is chosen too

large, the error may become unstable,

overshooting and fail to converge at all. On the
other hand, if learning rate is chosen too small, the
convergence will progress in very small step and
significantly increase the total time to
convergence. The learning rate is probably best to
keep it no larger than 0.1 but the appropriate
choice of learning rate is problem spei:iﬁc.
Effects of momentum

Figure 5 shows effect of changing the
momentum on the learning curve. It shows that
the best momentum for the prediction of
temperature change is 0.5. Even though three
values show the same convergence error but the
network with momentum 0.5 converged more

rapidly.
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Figure 4 Effects of learning rate learning behavior of the network
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Figure 5 Effects of momentum on the learning behavior of the network
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Adding a momentum term is another
possible way to improve the rate of convergence.
This can be accomplished by adding a fraction of
the previous weight change to the current weight
change. The addition of momentum term can help
smooth out the descent path by preventing extreme
changes. The momentum term will filter out
higher-frequency oscillations in the weight change.
TESTING OF INPUT-OUTPUT DEPENDENCE

There were seven variables which had been
tested for its effect on temperature change. These
seven variables were variables that have strong
relative relevance after pruning the network in
training phase.

Eff: f tapping ti nd igh

The tapping time and steel weights are
variables which influence the temperature drop of
the liquid steel. Figures 6 and 7 show the effects of
tapping time and steel weight on the temperature
drop respectively. It demonstrates that increasing
the tapping time and steel weight will increase the
temperature drop. Figure 7 shows that the steel
weight influences the temperature drop only slightly
for 140 tons steel weight. In practice, most of
tapping time is approximately S=8 min. which gives
temperature drop of 25°C. Predicted temperature
drop from the neural network in this range of
tapping time is about 20°C-30°C which
corresponds to values in the practice. From figure 6,

it can be seen that the tapping time is the largest

effect on the temperature change. During tapping,

the liquid steel is poured from BOF to ladle. The
heat can easily transfer from liquid steel to
environment by radiation.

Generally, the thermal energy in the liquid
steel system should increase as the steel weight is
increased. So the temperature drop should be lower
when the steel weight is increased. But the network
predicts the effect of steel weight contrary that is
the temperature drop is increased when the steel
weight is increased. The main reason for this point
would be in the practice when increase steel weight,
the tapping time will be also increased and the
effect of tapping time is more than the effect of
steel weight. However effects of steel weight on the
predicted temperature drop is only little.

Effect of flux an

Additives and fluxes are added during the
process of secondary metallurgy to improve the
quality and properties of steel. All of these additives
and fluxes affect temperature change of the liquid
steel in the process. Different additives affect on the
temperature change of liquid steel in differently.
Some additives affect the temperature change in the
same way. For example, calcium oxide (CaO)
absorbs the heat from liquid steel and lowers the
temperature of the liquid steel. However aluminium
(Al) reacts with oxygen and gives heat to system
resulting in an increase of temperature of the liquid
steel. Various effects of additives and flux can now

be illustrated in Figures 8-12.
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Figure 9 Effects of carbon on temperature drop
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Figure 12 Effects of aluminium on temperature drop

The best neural network, architecture
[11,4,1] is able to learn the influence of flux and
additive parameters on the temperature change of
the liquid steel. It can be seen that addition except
aluminium will decrease the temperature of the
liquid steel. These results conform to data from
thermodynamic calculation. Aluminium react with
oxygen (for deoxidation in liquid steel). This
reaction is exothermic (2[Al] +30 = (2AL,0,)).

Clearly, the neural network predicts a
linear relationship between temperature change and
the amount of addition. The relationship from
thermodynamic is also linear. The difference

between calculation line and network line of CaO

(in Figure 8) is in the boundary of average error
(7.46°C). This relationship shows that the network
can predict the effects of CaO well. Because there
are enough CaQ data for training network with

good result. Adding of other materials occur only in

some heats and to a much smaller extent,

Conclusion

1. Neural network model can forecast the
temperature drop during BOF operation and
transfer to the ladle within an error of + 7°C. The
optimized architecture of the network in this study

was found to be [11,4,1].



31

Temperature Change of Liquid Steel in BOF.

2. The hidden layer must be chosen so that
the perturbation of convergence is minimized.
Learning rate and momentum were also found to
affect the convergence. The optimized of the
learning rate and momentum are 0.01 and 0.5
respectively.

3. The temperature change was found to be
linear functions of all the metallurgical and process
variables.

4. Tapping time has tremendous effect on
the temperature drop while the steel weight was

found to have less effect.
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