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Abstract 
Due to the extraordinary mechanical, thermal, and electrical properties of graphene, graphene oxide 

(GO), and reduced graphene oxide (rGO), these materials have the potential to become ideal nanofillers 
in the electrodeposited nanocomposite coatings. This article provides an overview of literature on the 
improvements of properties associated with graphene, GO, and rGO-reinforced coatings, along with 
the processing parameters and mechanisms that would lead to these improvements in electrodeposited 
metal matrix nanocomposite coatings, where those affected the microstructural, mechanical, tribological, 
and anti-corrosion characteristics of coatings. The challenges associated with the electroplating of 
nanocomposite coatings are addressed. The results of this survey indicated that adding graphene into 
the plating bath led to a finer crystalline size in the composite coating due to increasing the potential 
development of specific crystalline planes and the number of heterogeneous nucleation sites. This 
consequently caused an improvement in hardness and in tribological properties of the electrodeposited 
coating. In graphene reinforced metallic composites, the severe adhesive wear mechanism for pure 
metallic coatings was replaced by abrasive wear and slight adhesive wear, where the formation of 
a tribolayer at the contact surface increased the wear resistance and decreased friction coefficient. 
Furthermore, superhydrophobicity and smaller grain size resulted from embedding graphene in the 
coating. It also provided a smaller cathode/anode surface ratio against localized corrosion, which has 
been found to be the main anti-corrosion mechanism for graphene/metal coating. Lastly, the study 
offers a discussion of the areas of research that need further attention to make these high-performance 
nanocomposite coatings more suitable for industrial applications.  

1. Introduction  
 
Nanocomposite/nanostructure coatings have recently attracted 

attention due to their mechanical, physical, and chemical properties 
[1-3]. There are several methods to prepare nanocomposite coatings, 
such as sol-gel, cold/thermal spray method, chemical vapor deposition 
(CVD), physical vapor deposition (PVD), electroless deposition, laser 
processing [4-12], and electrodeposition methods. The electrodeposition 
technique in particular has attracted significant attention since it can be 
done at ambient temperatures, it leads to a reduction in the chance 
of interfacial reactions, and it is an economical and less wasteful 
generative process requiring only a simple set-up [13-18]. 

A significant amount of research has been done on the electro-
deposition of metal and alloy coatings such as nickel (Ni), zinc (Zn), 
copper (Cu), nickel-cobalt (Ni-Co), nickel-zinc (Ni-Zn) [19-27]. 
The effects of different nanofillers on mechanical properties, wear 
resistance, and corrosion resistance of the coatings were investigated. 
It was found that the properties of the coatings can be significantly 
improved by adding nanofillers such as silicon carbide (SiC) 
[28,29], silicon dioxide (SiO2) [30], aluminum oxide (Al2O3) [31-32], 
titanium nitrate (TiN) [33], carbon nanotubes (CNTs) [34] to the matrix.  

The extraordinary mechanical, electrical, and thermal capabilities 
of graphene-based materials have attracted the attention of researchers, 
resulting in an exponential increase in the number of papers relevant 
to graphene-based materials in recent years. Graphene based materials 
can be effectively incorporated into electrodeposited materials. The 
increased understanding of graphene-based nanofiller and its homo-
genous dispersion in metal matrix coatings using the electrodeposition 
process opened up a wide variety of possible applications in fields 
ranging from medicine to energy. The regulated synthesis of these 
coatings, with well-defined nanomaterial size, shape, and crystallinity, 
provided ideal templates for the creation of hydrophobic surfaces, 
resulting in improved anti-corrosion capabilities [35-45]. 

The superior mechanical properties (high Young’s modulus and 
strong fracture strength) of graphene are related to their strong σ 
bonds (C–C bonds). Graphene has Young’s modulus of ~1 TPa, and 
the breaking strength is almost 200 times higher than steel. It is also 
worth noting that the mechanical properties decrease as the number 
of defects increases [46-47]. 

Perfectly structured graphene is relatively inert and interacts 
with other materials mainly by physical adsorption. However, foreign 
atom defects or surface functional groups realize higher reactivity 
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[48-52]. For example, Mark A. Bissett et al showed that mechanical 
strain could change the structure of graphene and greatly increase 
its chemical reactivity [53]. Furthermore, since graphene is inherently 
hydrophobic and graphene oxide is hydrophilic, it has been commonly 
used in combination with other materials in appropriate aqueous 
systems for the synthesis of graphene-based composites [54]. 

The thermal conductivity of suspended graphene is very high 
(6000 W⸳m-1⸳K-1), [43],[55-57]. Balandin et al reported that by 
including 5 vol% graphene, thermal conductivities could be improved 
by ~500% for graphene-metal composites. This mainly resulted from 
the intrinsically high thermal conductivity of the graphene component 
combined with its strong synergetic effects with metal and polymer 
components [58]. The quality of the graphene, such as the lateral size 
and defect factor, influenced its thermal conductivity [47]. The 
theoretical specific surface area (SSA) of defect-free monolayer 
graphene is 2630 m2⸳g-1. Graphene is a zero-gap semiconductor 
with semiconductive and metallic properties due to its unique 2D 
structure. The carrier mobility of graphene and suspended graphene 
at room temperature could reach 15000 cm2⸳V-1⸳s-1 to 200000 cm2⸳V-1⸳s-1 
with the charge carriers adjustable between electrons and holes [35], 
[43],[59-61]. Consequently, graphene has a high electrical conductivity, 
which is advantageous for enhancing the electrical conductivity of 
graphene-based composites for EES [62-63]. The number of layers 
and stacking orders, as well as the volume and form of defects, have 
a significant effect on the electrical conductivity of graphene [47]. 
Because of its special 2D microstructure with single-layered atomic 
thickness, graphene has an opacity of ~2.3% in a broad wavelength 
spectrum from ultraviolet to near-infrared [64-65]. On the other hand, 
the researchers also found that the transmittance of graphene decreases 
linearly as the layers increase. Graphene is being considered as 
a potential material for transparent applications in the future, including 
solar cells, batteries, smart windows, and other optoelectronic devices 
due to its superior optical properties [43],[64],[66-69].  

Nanocomposite/nanostructure coatings have an excellent passive 
barrier function which significantly improves the overall performance 
and service life of the coating. Graphene nanocomposites can be 
used in a wide range of applications such as membranes, coatings, 
anti-corrosion, energy storage, etc. [70-77]. More recently, the research 
has been extended to demonstrate graphene-containing (G) nano-
composites coatings [39],[40],[78-86]. 

For this paper, current developments in the synthesis of graphene-
based metal nanocomposite coatings were reviewed in-depth, 
with a particular emphasis on the electrodeposition technique and 
characteristics of these coatings. The objective is to provide a perspective 
on the effective parameters for the synthesis of nanostructure and 
nanocomposite coatings via electrodeposition methods and provide 
an overview of metallic coatings reported thus far. Section 2 of the 
article gives details on the co-deposition mechanism. The structural 
and morphological properties of nanocomposite coatings are studied 

in Section 3. Section 4 of this review deals with mechanical properties 
while Section 5 covers tribological properties. Section 6 gives detail 
about the anti-corrosion performance improvement and the final 
section describes challenges associated with electrodeposition of 
metal-graphene composite coatings and the current research gap. 

 
2.  Electrodeposition mechanism of graphene entry 
into metallic coating 
 

The electrophoresis migration of charged particles under electric 
field force is the main factor influencing particles into the electroplated 
coating, based on the theory of electrochemistry (Figure 1). As the 
cathode surfaces are charged negatively during the electrodeposition 
process, if the surfaces of particles have sufficient positive charges, 
conditions are favorable to the co-deposition of metal ions and 
particles at high speed. Therefore, it is hypothesized that the particle 
surface has a positive charge and the charge density per unit area is 
constant. It can be proved that the deposition speed depends on the size 
[87-89]. 

 
F  =  Eq (1) 

 
Furthermore, movement in the liquid is resisted by a frictional 

force that is proportional to the velocity. 
 

Ff  =  Vf (2) 
 
Where f is the frictional coefficient. 
From equations 1 and 2 the following can be deduced: 
 

𝜇𝜇 =  𝑉𝑉
𝐸𝐸

 =  𝑞𝑞
𝑓𝑓
  (3) 

 
Where µ is the mobility, V is velocity, q is the net charge on 

molecule, and E is the electric field strength. 
According to the Stokes law: 
 

f  =  6πηR (4) 
 
From equations 3 and 4: 
 

Eq  =  6πηRV (5) 
 
R is the radius of the capsule and η is viscosity. 
Here, E, q, and η are fixed values. Therefore  
 

𝑉𝑉 ∝  1
𝑅𝑅
  (6) 

 

 
Table 1. Properties of single-layer graphene [43]. 
 
ρ  
(g⸳cm-1) 

Tm  

(℃) 
As  

(m2⸳g-1) 
UTS  
(GPa) 

η  
(TPa) 

TC  
(W⸳m-1⸳K-1) 

1.06 5727 2630 130 1 1000-6000 
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Figure 1. Schematic mechanism of co-deposition of the particle into metal coating by electroplating methods: (a) schematic of electrodeposition set up,    
(b) initial state of electroplating bath, and (c) attachment of metal ions to the particles by electric field force, d) particle-ion migration toward the cathode.
 
3.  Microstructure of graphene containing composite 
coatingTable 

 
Graphene-based additives led to a finer crystalline size, changes 

in phase structure and the morphology to needle shape, pinecone-
like or rough surface for metal or metal alloy coatings as shown in 
Figures 2-4 [90-92]. The mechanism of crystalline size reduction is 
based on the graphene acting as a nucleation site as well as facilitating 
the formation of specific crystalline planes, which results in grain 
refining and heterogeneous growth. The addition of graphene oxide to 
cobalt (Co) coatings using the electrodeposition technique shows that 
GO affects morphology, phase structure, and the average grain size 
of the electrodeposit. The GO nanosheets dispersed in the composite 
coating change the morphology of the coating from a conical shape 
to a protruding structure, as well as refining crystalline size from 50 nm 
for pristine cobalt to 20 nm for a GO/cobalt nanocomposite [93]. 
The presence of graphene in the coating resulted in the reduction of 
the cobalt crystallite size, and the pyramidal morphology of the pure 
Co coating became smaller at low graphene concentrations and 
changed to a needle shape at the high concentrations [94]. Also, the 
incorporation of GO led to a refinement of the Zn crystallites in the 
coating matrix [95]. 

By using a combination of Ni pre-deposition and an elevated 
current assistant approach, pinecone-like micro/nanostructures of 
rGO/Ni composite coating were deposited successfully on a stainless-
steel substrate. This structure can improve the hydrophobicity of 
the coating which has led to enhanced anti-corrosion properties [96]. 
The addition of a proper amount of rGO provides a large number 
of nucleation sites, which accelerate the formation of heterogeneous 
microstructure [97].  

The influence of sodium dodecyl sulfate (SDS) usage as a 
dispersant in the electrochemical co-deposition of nickel shows that 
when the surfactant concentration in the electrolyte is increased, 
good graphene dispersion, coarser surface morphology, and reduction 
in grain sizes are achieved. The microhardness of coatings, adhesive 
strength, and anti-corrosion performance are also found to increase 
with the increasing SDS concentration [99]. The bath temperature 
during the electrodeposition process affects the surface morphology 
of the G/Ni composite coating (Figure 5). The results show that by 
increasing the deposition temperature, the average roughness (Ra 
nm) will increase, as well as the carbon content in the coating [79]. 

 

Figure 2. SEM images of the surface morphologies of (a) pure Ni, (b) Ni-B, 
and (c) Ni-B-GO. The cross sections of (d) Ni-B and (e) Ni-B-GO [90]. 

 

 

Figure 3. FESEM images of the surface coatings (a) Ni, (b) Ni/GNPs1, (c) 
Ni/GNPs2, (d) Ni/GNPs3, (e) Ni/GNPs4, and (f) Ni/GNPs5 [98]. 
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Figure 4. XRD pattern of nickel and graphene/nickel nanocomposite [98]. 
 

Figure 5. SEM images for the surface morphologies of Ni–graphene composite 
coatings prepared at deposition temperatures (a) 15℃, b) 30℃, c) 45℃, and 
d) 60℃ [79]. 

 

 

Figure 6. Microhardness and crystallite size of electrodeposited coatings Ni 
and Ni/GNPs1, Ni/GNPs2, Ni/GNPs3, Ni/GNPs4, Ni/GNPs5 corresponding 
to the milled graphene at 1 h, 2 h, 3 h, 4 h, and 5 h [98].  

4.  Mechanical properties 
 

Enhancement of the hardness of graphene-bashed nanocomposite 
coatings is the result of the excellent mechanical properties of graphene 
as well as refinement of crystalline size, which is based on increasing 
the number of heterogenous nucleation sites and possibility of 
formation of specific crystalline planes itself. According to the 
Hall-Petch equation, there is a linear relation between hardness and 
grain size, which is  

 
H  =  H0  + k.d-1/2   (7) 

 
where H0 is the hardness constant, k is a constant (Hall–Petch 

slope), and d is the average grain diameter [27], [100], [101]. Also, 
the graphene sheets make a compact interfacial bonding to the matrix 
and act as a net within the coating. When the indenter penetrates into 
the composite films, graphene sheets carry the load and hinder the 
movement of dislocations [102-104]. The nanomechanical analysis 
of the Ni/Graphene composites shows the improvement of the hardness 
from 1.81 GPa to 6.85 GPa, and elastic modulus from 166.70 GPa 
to 252.76 GPa compared to the pure Ni electrodeposits [92]. 

The size of the graphene nanoplatelets (GNPs) affects the 
microstructure and hardness of the electrodeposited nickel-graphene 
nanocomposite coatings (Figure 6). The experimental findings reveal 
that reducing the size, increasing the surface area, and enhancing 
the ability of GNPs to disperse led to changes in the microstructure 
and the hardness of the nanocomposite coatings. For nanocomposite 
coatings containing graphene with a size of 180 nm, hardness increased 
by up to 47% compared to pristine Ni coating. The highest microhardness 
achieved was calculated to be 273 HV. This hardness enhancement 
is due to the uniform dispersion in the Ni matrix of the small GNP sizes 
and the reduction in grain size using smaller GNPs [98]. The Vickers 
micro-hardness (HV0.2) of G-Ni composite coating increases with 
increasing the amount of graphene. This increase in hardness can be 
due to the finer grain size of Ni/Graphene composite compared to 
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Ni coating, which causes hindrance to the movement of the dislocations 
and led to plastic flow resistance and enhanced hardness. The high 
mechanical strength of graphene may have played a role in the 
hardness improvement in the composite coating [105]. Furthermore, 
the mechanical properties of the Ni matrix improved based on the 
formation of Ni crystalline in its plane (111), facilitated by graphene 
[106]. Z. Ren et al [102] reported an elastic modulus as large as 
240 GPa with hardness as large as 4.6 GPa with the addition of G 
as low as 0.05 g⸳L-1. 

The electrodeposited GO/Copper coating shows a maximum 
hardness of 3.32 GPa and the ultimate tensile strength of the composite 
coating was increased by 22.8% [107]. The Ni–W–TiO2–Graphene 
Oxide co-deposition with excellent mechanical properties and high 
wear resistance was produced using ultrasonic-assisted pulse electro-
deposition. The nanomechanical test results indicated a maximum 
improvement in hardness and elastic modulus of 8.1 GPa and ~209 GPa 
respectively, with the addition of graphene oxide and TiO2 [108]. 
As part of this review, previous work done in other studies was 
analyzed and compared. Table 2 is an overview of electroplating 
conditions used and microhardness results.  

Electrochemical deposition of Ni and Ni/graphene coatings on 
the textured surface of aluminum alloy, with concentrations of 0, 0.5, 1, 
and 1.5 mg graphene, show that friction and wear properties of the 
textured coating with the 1.5 mg graphene content had improved 
[4]. A Ni-graphene coating synthesized by electrodeposition in the 
presence of a surfactant demonstrated uniform graphene dispersion 
in the Ni matrix. The elastic modulus of the coating reached 240 GPa 
and the hardness reached 4.6 GPa with the addition of 0.05 g⸳L-1 
graphene to the plating bath, which are 1.7 times and 1.2 times the 
pure nickel deposited under the same condition, respectively. The 
formation of Ni crystalline in the plane (111) (Figure 4) resulted in 
the enhancement of mechanical properties of the Ni matrix [102]. 
Nickel–graphene composite coatings fabricated by the pulse electro-

deposition technique show enhanced properties (microhardness, 
tribological) dependent on the graphene concentration in the electrolyte. 
The increased graphene content in the electrolyte resulted in a 
significant increase in microhardness and wear resistance, as well as 
a decrease in the coefficient of friction (COF) [109]. 
 
5.  Tribological properties 

 
Graphene-based nanofillers enhance the hardness of composite 

coatings and based on Archard’s law, the wear rate is inversely 
proportional to the hardness. Also, the severe adhesive wear mechanism 
for pure metallic coatings changes to abrasive wear and slight adhesive 
wear in graphene reinforced metallic composites. Graphene is a 
self-lubricating material. The uniformly distributed nanosheets in 
the composite coating lead to the formation of a tribolayer and a 
significant decrease of the friction coefficient [101], [115], [116].  

The Nickel-GO nanocomposite coatings on the SS440 samples 
were prepared using pulse electrodeposition (PED). The tribological 
results revealed that the GO particles improved the friction and 
wear resistance through the formation of a tribolayer at the contact 
interface [117]. Studies on Ni-graphene composite coatings showed 
that COFs of the composite coatings were reduced by increasing the 
amount of graphene reinforcement which caused improvement in 
wear resistance properties (Figure 7) [105], [106]. According to the 
research done by J. Chen et al [105], the friction coefficient decreased 
with the increased amount of graphene. The friction coefficients 
shown by the coatings containing 0.1 g⸳L-1 and 0.2 g⸳L-1 graphene 
were higher than the COF of pure Ni coating (0.7), and for the coating 
having 0.3 g⸱l-1 graphene was nearly the same as pure Ni coating. 
Thus, the addition of graphene should be more than 0.3 g⸳L-1 to be 
effective in reducing friction. This can be due to the high Young’s 
modulus of graphene hindering the formation of a lubricating film 
when the amount of graphene is less [57], [105]. 

Table 2. A summary on processing parameters and microhardness of graphene derivations reinforced metal matrix nanocomposite coatings. 
 
No. Coating Current density  Temp /pH Deposition  Surfactant Reinforcement  Microhardness Ref. 
    time  material Pristine  

coating 
Composite  

          
1 Nickel Direct 50 mA⸳cm-2 45°C/ 3-4 60 min SDS 0, 0.2,  

0.4 g⸳L-1 
rGO 0.2 g⸳L-1   500 HV [98] 

2 Nickel Pulse 50 mA⸳cm-2 45°C/ 4  SDS 0.2 g⸳L-1 rGO 0.1, 0.25,  
0.5 g⸳L-1 

 427, 451,  
492 HV 

[108] 

3 Nickel Direct 50 mA⸳cm-2 15, 30, 45,  
60°C/ 3-4 

60 min SDS 0.4 g⸳L-1 GO 0.2 g⸳L-1  ~220, 300,  
500, 340 HV 

[109] 

4 Nickel Direct 10 mA⸳cm-2 40°C  SDS 0.2 g⸳L-1 rGO 0.1 g⸳L-1 287 HV 385 HV [110] 
5 Nickel Direct 50 mA⸳cm-2 55°C/ 4.0  N/A GO 1 g⸳L-1 1.81 GPa 6.85 GPa [92] 
6 Nickel Direct 1.5-40 mA⸳cm-2 50°C/ NA 1-4 h SDS 0.5 g⸳L-1 rGO 0.05 g⸳L-1 3.83 GPa 4.6 GPa [101] 
7 Nickel Direct 25 mA⸳cm-2 45°C/ 4-5 90 min SDS 0.1 g⸳L-1 GNPs 0.3 g⸳L-1 186 HV 273 HV [91] 
8 Nickel Direct 10 mA⸳cm-2 50-80°C/ NA 2, 4, 6, 8 h SDBS 0.05 g⸳L-1 GO 0.1, 0.2, 0.3,  

0.4 g⸳L-1 
 ~207, 210,  

218, 223 HV 
[104] 

9 Co–Ni-P Pulse 20 mA⸳cm-2 45°C/ 3 70 min  GO 0.2 g⸳L-1 450 (HV) 600 (HV) [111] 
10 Nickel  90°C/ 6 5 min  rGO 0.2 g⸳L-1 6.45 ± 0.39  

GPa 
8.09 ± 0.65 GPa [112] 

11 Ni–Zn DC 10 mA⸳cm-2 30°C /2.5 20 min  GO 0.1 g⸳L-1 105.3 (HV) 124.8 (HV) [113] 
12 Ni–Zn DC 10 mA⸳cm-2 30°C /2.5 20 min  rGO 0.1 g⸳L-1 105.3 (HV) 127.5 (HV) [113] 
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Figure 7. Coefficient of friction plots for (a) pure Ni and Ni-CNT composites, 
and (b) pure Ni and Ni-GNP composites [118]. 
 

Tribological analysis of electrodeposited pure cobalt and 
cobalt/graphene composite coatings on St37 steel substrates revealed 
that the co-deposition of graphene particles decreased the volume 
loss and the friction coefficient of a pure cobalt coating [119]. The 
GO led to the formation of hcp (1 0 0), (0 0 2), and (1 0 1) textures, which 
resulted in the functions of grain refining and hardness enhancement. 
Furthermore, the composite coating showed better corrosion and 
wear resistance along with a lower coefficient of friction (COF) [93].  

Reduced graphene oxide/copper coatings can successfully be 
electrodeposited from a surfactant-free colloidal solution. Tribological 
tests showed that a coating with a 0.27 wt% amount of rGO exhibits 
a low COF and a specific wear rate 10 times to 18 times lower than 
that of pure copper coatings. This could be due to the formation of 

a compacted and stable tribolayer consisting of rGO sheets and 
copper oxides on the worn surface, as a similar phenomenon was 
seen in the case of nickel/graphene composite coatings. Indeed, the 
mentioned tribolayer acts as a lubricant and a barrier at the interface 
of the friction pairs to decrease the direct contact area [109],[120].  

The addition of graphene to the Ni matrix can minimize wear 
while providing low friction, as shown by Figure 8. The low surface 
energy of the Ni–graphene surface, which decreases the adhesive 
forces between the wear particles and the surface, is responsible for 
this behavior. The reduced adhesive forces result in a reduction in 
wear particle size and agglomeration [121].  
 
6.  Anti-corrosion properties 

 
Graphene is an excellent additive candidate to fabricate super-

hydrophobic coatings [96,122-127]. Graphene also refines the grain 
size of the coating and this smaller grain size can provide a smaller 
cathode/anode surface ratio which is effective against localized 
corrosion [128,129]. The combined properties of super-hydrophobicity 
and smaller cathode/anode surface ratio significantly improves overall 
resistance to corrosion. 

Different research has been done on electrodeposited Ni/graphene, 
Ni/rGO, and Ni/ GO composite coatings to investigate the corrosion 
performance [130-133]. The composite coating of Ni/graphene on 
a mild steel substrate showed better anti-corrosion behavior compared 
to pure Ni coating [111]. Ding et al [134] fabricated a superhydro-
phobic nickel/graphene hybrid film with improved corrosion resistance 
on mild steel. Superhydrophobicity behavior (water contact angle 
162.7°±0.8, sliding angle (SA) of 2.5°±1.0), was shown by the reduced-
graphene oxide/Ni composite coating with pinecone-like micro/nano-
structures on a stainless steel substrate. As indicated in Figure 9, 
the coatings exhibited good anti-corrosion performance in 3.5 wt% 
NaCl solution, with 99.98% inhibition efficiency [96].

  

 

Figure 8. SEM images of the wear particles around the wear track of (a) 1045 steel, (b) Ni coating, and (c) Ni–Gr coating [121].
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Figure 9. Potentiodynamic polarization curves of coatings obtained at GO 
concentrations of 0, 0.05, 0.1, 0.2, and 0.3 g·L1 at a scan rate of 0.5 mV·s-1 in 
3.5 wt% NaCl solution [135]. 

 
Figure 10.  Effect of deposition temperature on the impedance spectra of 
composite coatings in 3.5% NaCl solution [79].

Table 3. A summary on corrosion behavior of metal matrix nanocomposite coatings reinforced by graphene derivatives. 
 
No. Matrix Reinforcement  Current  Temp / Deposition  Surfactant Microhardness  Ref. 
  material 

 
density  
 

pH time  Ecorr  

(mV) 
Icorr  
(μA⸳cm-2) 

Corrosion rate 
(mm/year) 

  

1 Nickel GO 0.125- 
1.500 g⸳L-1 

DC 30  
mA⸳cm-2 

45°C/ 2.5 60 min SLS 1 g⸳L-1 -424 –  
-419  

4.845- 2.883  
 

  [139] 

2 Nickel Graphene  
0.5 g⸳L-1 

DC 40  
mA⸳cm-2 

45°C /4.0 30 min fluorinated surfactant  
(16 cm3⸳dm-3) 

-225   0.66  8.12  [140] 

3 Nickel Graphene 
0.5 g⸳L-1  

DC 40  
mA⸳cm-2 

45°C/4.0 30 min [3-(heptadekafluorineoctyl)-
sulphonyl]-aminopropyl-
trimethylammonium  
iodide (21 cm3⸳dm-3) 

-220  0.50  6.16  [140] 

4 Cobalt GO 0.2 g⸳L-1 Pulse 40  
mA⸳cm-2 

45°C/ 5.0 2 h  -359.7  3.04  1.56×10-2  [128] 

5 Nickel GO 0.2 g⸳L-1 Pulse 60 
mA⸳cm-2   

Frequency  
50 (Hz) 

50°C/ 3.6 30 min  -131  0.0224    [134] 

6 Nickel GO 0.2 g⸳L-1 DC 90 
mA⸳cm-2 

45°C/ 3-4  SDS 0.4 g⸳L-1 130  0.2128    [141] 

7 Tin G 0.05 g⸳L-1  DC 6.5 
mA⸳cm-2   

25°C/ 3.5 20 min  -537  0.815  
 

0.896±0.056 
μg h-1 

 [142] 

8 Zinc G 0.05 g⸳L-1 DC 40 
mA⸳cm-2   

25°C/ 3.5 15 min  920  6.82  8.32 μg h-1  [143] 

9 Co–Ni-P GO 0.2 g⸳L-1  Pulse 20  45°C/ 3 70 min  -352.5  3.05    [111] 
10 Nickel rGO 0.2 g⸳L-1 mA⸳cm-2 90°C/ 6 5 min  -442  0.68  

 
0.0078   [112] 

11 Ni–Zn GO 0.2 g⸳L-1 DC 10 
mA⸳cm-2 

30°C/2.5 20 min  42.9  38.2  0.0935  [113] 

12 Ni–Zn rGO 0.2 g⸳L-1  DC 10 
mA⸳cm-2   

30°C/2.5 20 min  -12.3  33.8  0.0629  [113] 

13 Zn-Ni-Fe G 0.075 g⸳L-1 DC 10 
mA⸳cm-2 

43±2°C/  
3.2 

45 min  -1100  4.134  5.043 μg h-1  [81] 

14 Nickel G 1 g⸳L-1 DC 40 
mA⸳cm-2 

45°C/4.0 30 min anionic high fluorinated 
surfactant (SPA) 

-188  0.12  1.48   [144] 

15 Nickel G 1.5 g⸳L-1 DC 137.5  
mA⸳cm-2 

40°C/ 3-4 5 min SDBS 0.015 g⸳L-1 -601.69  397.18    [4] 

16 Nickel rGO 0.6 g⸳L-1 DC 80  
mA⸳cm-2 

25°C/ 5 min  -184.21  0.20    [145] 

17 Ni- Co G Platelet  
0.05 g⸳L-1 

DC 20 
mA⸳cm-2 

40°C/ 4   -512  100.1    [146] 
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The electrodeposition of Ni/graphene composite coatings on 
carbon steel at various deposition temperatures indicated significant 
changes in surface morphology, compositions, roughness, phase 
structures, and the electrochemical properties of the coatings 
(Figure 10). The results demonstrated deposition at 45℃ exhibited 
refined grain sizes, high microhardness, and better corrosion resistance 
performance [79]. 

Other metal or metal alloy matrices are of great interest for 
electrodeposited composite coatings with graphene, rGO, and GO 
additives [81,136,137]. Results showed that Zn-GO composite 
coatings have higher corrosion resistance compared to the pristine 
Zn coatings. Also, with the increase in the volume fraction of the 
GO in the composite coatings, the corrosion rate decreased [95]. 
Moshgi Asl et al [138] fabricated a reduced graphene oxide/zinc 
(rGO-Zn) nanocomposite coating deposited on a steel substrate by 
using pulse-potential co-electrodeposition. The results showed that 
the corrosion rate decreased from 0.034 mm/year to 1.62 × 10−4 mm/year. 
The investigation of electrodeposited Ni-Co and Ni-Co/rGO coatings 
on Q235 carbon steel substrate showed that incorporation of rGO 
nanoplatelets has improved corrosion resistance by 17.5 Rct⸱k-1Ω-1cm-2 
compared to 4.55 Rct⸱k -1Ω -1cm-2 for Ni-Co coatings.  rGO platelets 
facilitated the formation of a large number of grain boundaries with 
less crystal growth and provided surface roughness. Lastly, rGO 
platelets filled the cavities or pores, which subsequently contributed 
to improved mechanical and corrosion properties [139]. Table 3 provides 
an overview of electroplating conditions used and anti-corrosion 
results.  
 
7.  Challenges or perspectives 
 

The following lists a few areas of research that should be further 
explored in order to improve our understanding of the electrodeposited 
graphene-based nanocomposites: 

The effects of reinforcement additives in the plating bath and 
on the nanostructure of coatings need to be further investigated. 

As electric current influences the microstructure of coatings, its 
impact on morphology, mechanical, and anti-corrosion properties 
should be explored.  

The pH of the plating bath is a vital factor that influences the 
properties of the produced coating which additional research is 
needed to investigate. 

There is a lack of research on the co-deposition of graphene-
based additive into metal matrix coating. 
 
8.  Conclusion 

 
Current developments in the synthesis of graphene-based metal 

nanocomposite coatings, with a special focus on the electrodeposition 
approach and properties of these coatings, were discussed in detail 
in this review. Graphene-based reinforcements have been incorporated 
in the metallic matrices using electrodeposition techniques, based 
on electrophoresis migration of charged particles. It has been shown 
that using smaller particles leads to high-speed co-deposition. 
Furthermore, smaller size and higher amount of graphene-based 
reinforcement refine the crystalline size and growth of the preferred 
crystalline plane (111) in the metallic coating. The refinement of 

crystalline size in addition to the excellent mechanical properties of 
graphene yields a significant enhancement of the hardness of the 
coating. Literature showed that the incorporation of graphene impacts 
the tribological properties of the electrodeposited coating too. 
Additionally, graphene changes the severe adhesive wear mechanism 
of metallic coatings to abrasive wear and slight adhesive wear, and 
also the graphene forms a tribolayer and significantly decreases the 
friction coefficient. In terms of corrosion characteristics, due to the 
improvement in superhydrophobicity of the coatings, as well as 
a smaller cathode/anode surface ratio against localized corrosion, 
corrosion resistance increases considerably with the addition of 
graphene particles. 

Although the electrodeposition approach can yield defect-free, 
low cost, and adjustable graphene-based metal nanocomposite 
coatings, they have not been studied thoroughly and more research 
is needed to make this process suitable for industrial application. 
In particular, extensive research is required to understand the 
co-deposition mechanism and interactions between the metals and 
the graphene surface, which will have a direct impact on the properties 
of these coatings such as anti-corrosion, and anti-wear characteristics. 
Although several methods have been applied to homogeneously 
electrodeposit the dispersed nanocomposites using various surfactant 
and functionalization techniques, further efforts must also be directed 
towards the prevention of restacking graphene and the improvement 
of the dispersion quality of graphene-based metallic coatings. 
Furthermore, in the case of biomedical applications, it is critical to 
understand the biocompatibility and toxicity of these functionalizations 
and surfactants to make the resulting nanocomposites safe to use.  
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