Tungsten disulfide-nickel oxide hybrids as high-performance supercapacitors

Zainab Ali HRBE1,*, and Samaher Waheed HASHIM2

1 College of Science, Wasit University, Wasit, Iraq
2 Ministry of Education, General Directorate of Education Wasit, Wasit, Iraq

*Corresponding author e-mail: zainabali@uowasit.edu.iq

Abstract

Two-dimensional materials are suitable for energy storage applications due to their chemical stability, high electrical conductivity and large specific surface area. In this work, tungsten disulfide (WS2) nanosheets were synthesized by chemical exfoliation method and combined with nickel oxide (NiO) nanoparticles to be used as a working electrode for storing energy. The WS2 electrode alone shows a capacitance of about 21.87 mF cm⁻², which is improved up to 64.58 mF cm⁻² by adding NiO nanoparticles. The occurrence of redox reactions plays an important role in increasing the final capacitance. Moreover, the proposed hybrid maintains 93% of its initial capacitance after 5000 charge-discharge cycles, which indicates its stable and reliable performance.

1. Introduction

With the increase of energy consumption, the need for energy storage devices is also in high demand [1]. Among the proposed solutions, supercapacitors can be very promising as electrochemical storage devices [2,3]. These electronic devices have less capacity than batteries but deliver higher power density [4]. In addition, supercapacitor has a faster charge-discharge rate with long cycle life [5]. In order to achieve supercapacitors with high energy storage density, materials with large surface area to volume ratio, high charge transport and chemical stability are required [6]. Therefore, two-dimensional (2D) materials are attractive alternatives compared to other conventional materials [7-9]. Graphene was the first 2D material to be introduced as a supercapacitor and has shown considerable capacitance [10,11]. However, self-re-stacking of graphene sheets dramatically reduces its energy storage density which of course limits its performance [12,13]. Other 2D materials such as molybdenum disulfide (MoS2), phosphorene etc. have been also suggested as supercapacitors, but most of them show limited capacities [14,15]. One way to improve the capacity of these materials is to combine them with other materials (such as PANI, metal oxide, etc.) to introduce a hybrid. Although PANI is conductive, it has low energy density and poor cyclic stability [16, 17]. In contrast, metal oxides play an important role in increasing hybrid capacitance by providing synergetic effects and redox reactions [18]. Up to now, supercapacitors such as PANI/graphene, MoS2@CNT/RGO, NiO/MoS2/rGO, NiS2@MoS2, and MnO2/Graphene have been introduced that offer significant capacity compared to 2D individual electrodes [5,19-23]. Tungsten disulfide (WS2) is another 2D material that has recently been welcomed by researchers in energy applications thanks to its layered structure which allows ions to penetrate into it leading to energy storage through the intercalation process. It also provides high capacitance through formation of a EDLC due to its high effective surface area [24]. Until now, few WS2-based supercapacitors have been introduced, such as WO3@WS2, graphene@WS2, and WS2@α-NiMoO4 [25-27]. Despite the excellent intrinsic properties of WS2, high energy density capacitance has not been reported so far for electrodes based on it. Moreover, the fabrication of WS2 supercapacitors has also been reported to involve complex processes that have limited its development for energy storage applications.

In this work, tungsten disulfide (WS2) nanosheets are easily prepared by chemical sonication method and combined with nickel oxide (NiO) nanoparticles to form a supercapacitor electrode with a high capacitance performance. NiO nanoparticles are decorated on WS2 nanosheets by depositing a 50 nm of its thin film followed by heating treatment. The fabricated electrodes are then tested in a three-electrode electrochemical cell in a 1 M Na2SO4 electrolyte. Based on the results, the WS2@NiO electrode shows a 195% increase in capacitance compared to individual WS2 electrode, which maintains a 93% stability after 5000 charge/discharge cycles. WS2 stores energy by providing a large surface area through electric double layer capacitance (EDLC) mechanism. Furthermore, its combination with NiO nanoparticles improves the capacitance through additional redox reactions. These two properties, together with the synergistic effects, result in the superiority of the introduced hybrid compared to individual WS2 electrodes.
2. Experimental

2.1 Material

Tungsten disulfide powder with >99% purity was purchased from Sigma-Aldrich. N-Methyl-2-pyrrolidone (NMP) and sodium sulfate (Na2SO4) were supplied from Merck.

2.2 Characterization

TEM and SEM imaging were carried out by CM30m Philips and S4160 Hitachi systems, respectively. The Raman spectroscopy was done with a Renishaw Ramascope using a 532 nm laser line. XRD patterns were performed with a PANalytical X’pert Pro MPD, using Cu Kα radiation with a wavelength λ = 0.15406 nm. UV-visible spectroscopic measurement was performed by Perkin Elmer, Lambda 35. Surface morphology of electrode was characterized by NT-MDT atomic force microscopy. The thickness of the deposited NiO thin film was measured by a SENpro ellipsometer. A three-electrode electrochemical cell was used to test electrodes in a 1 M Na2SO4 electrolyte with Ag/AgCl reference and platinum counter electrodes. Electrochemical Impedance Spectroscopy (EIS) testing was performed by electrochemical workstation IM6 (Zahner IM6).

2.3 WS2 nanosheets preparation

WS2 powder (5 g) and 50 mL NMP solution was mixed and sonicated for 120 min using a probe sonicator at 300 W. Then, the obtained suspension was centrifuged at 1000 rpm for 15 min and top supernatant was collected as the final dispersion.

2.4 WS2@NiO electrode fabrication

Two drops of WS2 solution were cast on stainless steel substrates and dried in an oven vacuum at 70°C. Then, 50 nm of nickel oxide film was sputtered on samples and annealed at 300°C under argon atmosphere for 30 min. Next, electrodes were soldered with silver paste and all opening except the surface of the samples were passivated with epoxy glue.

3. Results and discussion

Figure 1(a) exhibits a scanning electron microscopy (SEM) of WS2 nanosheets. The nanosheets are evenly coated on the substrate and provide a large surface area to volume ratio for supercapacitor applications. Figure 1b presents a transmission electron microscope (TEM) image of WS2 nanosheets on a carbon grid. The transparency of the layers indicates their nanometer thicknesses. The thickness of one part of the deposited film on the substrate is shown in Figure 1(c) by atomic force microscopy (AFM) analysis. In 30 µm² × 30 µm² window, a maximum thickness of 150 nm is measured for the nanosheets, which indicates the coverage of the substrate with nanometric thicknesses.

One of the analysis that is suitable for characterizing 2D materials is Raman measurement. In this analysis, each 2D material has its own characteristic peaks that their location in the bulk mode can be different from the multilayer mode [28]. In the case of WS2, Raman test is performed for both bulk and nanosheets cases. Figure 2(a) shows the Raman spectra of the bulk WS2 and its nanosheets. WS2 has two oscillation modes, one of which is caused by an in-plane phonon oscillation called E1g, and the other of an out-of-plane phonon oscillation called A1g [29]. In the bulk state, the position of the E1g and A1g peaks are measured at 351 and 420 cm⁻¹, respectively. For WS2 nanosheets, the locations of these peaks are shifted to 354 and 416 cm⁻¹, indicating their lower thickness in respect to the bulk WS2. Schematics of the atom oscillations of both modes are also drawn inside the Figure 2(a). Figure 2(b) demonstrates the absorption spectrum of the WS2 dispersion which contains three peaks of C, B, and A at 470, 521, and 632 nm, respectively [30]. The peaks A and B are due to the exciton transitions at the k point, while peak C is due to the exciton transitions at the Γ point of the Brillouin zones [30]. The presence of all three peaks strongly indicates the presence of WS2 nanosheets in the prepared dispersion.

After synthesizing WS2 nanosheets, they are deposited on a stainless steel substrate and 50 nm of nickel oxide is sputtered on it. The layer thickness is controlled by the ellipsometry measurement. The sample is then heated at 300°C in argon atmosphere for 30 min to convert the layer into nickel oxide nanoparticles. The schematic illustration of the fabrication steps of the electrodes is presented in Figure 3. Accordingly, WS2 nanosheets were deposited on the stainless steel substrate followed by sputtering 30 nm NiO film. Then, the sample was heated up at 300°C under argon atmosphere for 30 min. Finally, the electrodes were soldered and passivated in order to use in the electrochemical cell.
Figure 2. (a) Raman spectra of the WS$_2$ in both bulk and nanosheets form, and (b) Absorption spectrum of the WS$_2$ dispersion with corresponding A, B, and C peaks.

Figure 3. Schematic illustration of the electrode fabrication process.

Figure 4(a) exhibits the SEM image of nanoparticles on the substrate. The approximate diameters of the nanoparticles are measured at about 100 nm. Figure 4(b) shows the SEM image of the nanoparticles on a WS$_2$ nanosheet where the NiO nanoparticles cover the entire surface of the WS$_2$ nanosheets.

Figure 5 shows the XRD spectra of NiO, WS$_2$ nanosheets and WS$_2$@NiO hybrids. In the case of WS$_2$, (002), (004), (100), (101), (103), (006), (105), (110), (008), and (112) peaks are located at 14.11°, 28.06°, 33.02°, 33.84°, 39.43°, 44.27°, 50.01°, 58.30°, 60.10°, and 61.15°, respectively [31]. In the XRD spectrum of the NiO sample, (111), (200), (220), (311), and (222) peaks are placed at 36.76°, 42.11°, 61.42°, 74.35°, and 78.11°, respectively [32]. Accordingly, diffraction peaks of both structures are observable in the hybrid sample, which confirms its successful synthesis.
The fabricated electrodes are used as working electrodes in a three-electrode electrochemical cell. 1 M Na2SO4 solution is used as electrolyte. Figure 6(a) shows the current-voltage test of the WS2 electrode. It can be seen that the curves have a rectangular shape, which is mainly due to the EDLC behavior of WS2 nanosheets. Although the internal area of the curves increases as the scan rate increases, the final capacitance decreases [5]. According to the results, the capacitance of 21.87, 13.33, 11.66, 10.41 and 6.14 mF·cm$^{-2}$ are calculated for 5 mV·s$^{-1}$ to 200 mV·s$^{-1}$ scan rates, respectively. Figure 6(b) presents the current-voltage test of a WS2@NiO electrode that was performed similar to the previous test. Unlike WS2 electrode, redox peaks are observed here, which may be due to the presence of NiO nanoparticles. For this electrode, capacitance value of 64.58, 28.33, 24.16, 17.91 and 13.12 mF·cm$^{-2}$ are calculated at scan rates of 5 mV·s$^{-1}$ to 200 mV·s$^{-1}$, respectively. Figure 6(c) compares the calculated capacitance of both electrodes in respect to different scan rates. Accordingly, the WS2@NiO electrode delivers more capacitance values at all scan rates compared with WS2 electrode, which can be due to the redox reactions and synergistic effects of NiO nanoparticles with WS2 nanosheets [33]. Table 1 shows the calculated capacitance values of both electrodes.

Figure 6(d) displays the charge-discharge test of both electrodes under a constant current density of 0.35 mA·cm$^{-2}$ in a 600 mV voltage window. The charge-discharge curve of the WS2 electrode is perfectly symmetric, which is consistent with the results of its voltammetric test, while for the WS2@NiO electrode asymmetry is observed due to the redox reactions [28,34]. However, it is observed that the discharge time of the hybrid electrode is longer than the WS2 electrode.

Table 1. Capacitance value of WS2 and WS2@NiO electrodes at different scan rates of 5, 25, 50, 100, and 200 mV·s$^{-1}$.

<table>
<thead>
<tr>
<th>Scan rate (mV·s$^{-1}$)</th>
<th>Capacitance (mF·cm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS2</td>
<td>WS2@NiO</td>
</tr>
<tr>
<td>5</td>
<td>21.87</td>
</tr>
<tr>
<td>25</td>
<td>13.33</td>
</tr>
<tr>
<td>50</td>
<td>11.66</td>
</tr>
<tr>
<td>100</td>
<td>10.41</td>
</tr>
<tr>
<td>200</td>
<td>6.14</td>
</tr>
</tbody>
</table>

Figure 6. Voltammetry test of the (a) WS2, (b) WS2@NiO electrodes at different scan rates, (c) Capacitance values of the electrodes as a function of scan rates, and (d) Charge-discharge test of the electrodes at a constant current density of 0.35 mA·cm$^{-2}$.
Figure 7. EIS spectra of the WS2 and WS2@NiO electrodes. (a) Inset shows the equivalent circuit of the electrode, and (b) Capacitance retention test of the WS2@NiO electrode for 5000 charge-discharge cycles.

Table 2. Comparison of capacitive performance of WS2 based supercapacitors.

<table>
<thead>
<tr>
<th>Electrode Material</th>
<th>Electrolyte</th>
<th>Scan rate</th>
<th>Specific capacitance</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS2 nanosheets</td>
<td>PVA-H3PO4</td>
<td>100 mV/s</td>
<td>13.0 mF/cm²</td>
<td>[35]</td>
</tr>
<tr>
<td>WS2 QDs</td>
<td>PVA-H3PO4</td>
<td>100 mV/s</td>
<td>22.0 mF/cm²</td>
<td>[35]</td>
</tr>
<tr>
<td>WS2/WO3</td>
<td>0.1 M Na2SO4</td>
<td>5 mV/s</td>
<td>47.5 mF/cm²</td>
<td>[36]</td>
</tr>
<tr>
<td>WS2/PEDOT:PSS</td>
<td>1 M H2SO4</td>
<td>40 mV/s</td>
<td>86.0 mF/cm²</td>
<td>[37]</td>
</tr>
<tr>
<td>WS2@PANI</td>
<td>1 M Na2SO4</td>
<td>100 mV/s</td>
<td>4.0 mF/cm²</td>
<td>[38]</td>
</tr>
<tr>
<td>WS2@NiO</td>
<td>1 M Na2SO4</td>
<td>5 mV/s</td>
<td>64.5 mF/cm²</td>
<td>This work</td>
</tr>
</tbody>
</table>

Electrochemical Impedance Spectroscopy (EIS) analysis is performed to compare the performance of the two electrodes in energy storage. The EIS spectrum of two electrodes are shown in Figure 7(a), where the WS2@NiO electrode reveals a smaller radius than the WS2 electrode. This behavior may be due to lower internal resistance in the former sample, which allows ion transport to be carried out more efficiently [28]. Inset of Figure 7(a) also shows the equivalent circuit of the electrodes. Moreover, after 5000 charge-discharge cycles testing of WS2@NiO electrode, it retained 93% of its initial capacitance as shown in Figure 7(b). The high cyclic stability of the WS2@NiO electrode along with its high capacitance value indicates its excellent potential that can be developed as a commercial supercapacitor.

According to CV curves, the predominant energy storage mechanism in WS2 nanosheets is EDCL behavior, while in NiO nanoparticles it shows pseudocapacitance behavior due to redox peaks. As a result, the energy storage process can be described in the hybrid as follows [5]:

\[(\text{MoS}_2)_{\text{surface}} + \text{Na}^+ + e^- \leftrightarrow (\text{MoS}_2 - \text{Na}^+)_{\text{surface}} \quad (1)\]

\[\text{NiO} + \text{Na}^+ + e^- \leftrightarrow (\text{NiO} - \text{Na}^+)_{\text{surface}} \quad (2)\]

4. Conclusions

Two-dimensional materials are suitable for energy storage applications due to their large surface area. However, experimental results show that these materials deliver limited capacitance. In this work, WS2 nanosheets were easily synthesized by chemical sonication and combined with NiO nanoparticles to be used as electrodes for supercapacitor applications. The results showed that the WS2@NiO electrode stored 195% more energy than the WS2 electrode with retaining 93% of its initial capacitance even after 5000 charge-discharge cycles. The extraordinary performance of this electrode can introduce it as a commercial supercapacitor.

References

