Effect of A-site modification on structural and microwave dielectric properties of calcium titanate

Shailendra RAJPUT¹,², and Sunita KESHRI¹,*

¹ Department of Physics, Birla Institute of Technology, Mesra, RANCHI 835215, INDIA
² Department of Physics, University Centre for Research & Development, Chandigarh University, MOHALI 140431, INDIA

*Corresponding author e-mail: s_keshri@bitmesra.ac.in

Abstract
This article presents studies on characteristics properties of CaTiO3, Ca0.8Sr0.2TiO3, and Ca0.6La0.8/3TiO3 ceramics. These ceramics were synthesized using the solid-state reaction process. Structural examination revealed that the grown ceramics have an orthorhombic structure with the Pbnm space group. The random distribution of particle size was shown through morphological investigation. Apparent density of developed ceramics was determined using the Archimedes technique and found to be < 90%. The microwave dielectric properties of grown ceramics are compared on the basis of ionic polarizability. It is observed that partial replacement of Ca-ions by Sr-ions provides a high permittivity value (εr = 168.93), higher quality factor (Q × f = 9,330 GHz), and enhanced positive temperature coefficient of resonant frequency (τf = 908.17). However, the substitution of Ca-ions by La-ions offers a low permittivity value (113.35), higher quality factor (16,730 GHz), and decreased temperature coefficient of resonant frequency (229.49 ppm/°C). These materials can be used with the ceramics possessing a negative temperature coefficient of resonant frequency to balance its τf-value nearly to zero.

1. Introduction

The continuing evolution of ceramic materials and the associated technologies are accelerating rapidly. These materials have essential roles in the wireless communication industries, which require signals of higher (microwave) frequency range and miniature circuits [1-4].

The ceramic dielectric resonators (DRs) are the most important components in microwave devices [5-7]. The DRs must have high relative permittivity (εr) for compact size, large quality factor (Q × f) for precise frequency selectivity, and almost zero temperature coefficient of resonant frequency (τf) for thermal constancy [8]. Two traditional techniques for dielectric ceramic modification with desired features are known: one is to produce a new dielectric ceramic material, and the other is to make a composite utilizing two or more dielectric materials with characteristic compensation. The most common strategy is to combine two or more chemicals with negative and positive τf values to achieve nearly equal zero τf values [6,9-12]. For example, 0.95MgTiO3 – 0.05CaTiO3 ceramic shows (εr) ~ 21, (Q × f) ~ 56,000 GHz at 7 GHz and τf ~ 0 ppm/°C [11]. Though, the sintering temperature of MgTiO3 – CaTiO3 ceramics is comparatively high (1450°C) for real-world applications.

Several other properties of CaTiO3-based composites are under recent investigations. In a recent paper [13], the electrical properties, XPS-results, and impedance of CaCu3TiO12 – CaTiO3 have been thoroughly explained. In another paper [14], the CaTiO3 – LaAlO3 composite microwave ceramic has been used in designing dielectric patch antennas. Also, the thickness-dependent hysteresis behaviors of CaTiO3 films [15] have been reported for a metal-CaTiO3-metal structure which can have a potential use in the extremely low voltage. The CaTiO3 is a perovskite-structured mineral that shows good microwave dielectric properties (εr ~ 170, Q × f ~ 3,600 GHz at 7 GHz, and τf ~ 1800 ppm/°C) [16]. The CaTiO3-based materials have promising properties of ferroelectricity, piezoelectricity, elasticity, and microwave dielectric [17]. These properties have sparked great interest among researchers. In recent work, Bai et al showed the applicability of CaTiO3 for microwave absorption in X and Ku bands [18]. The CaTiO3-based ceramics have been mostly used as one component of the composite materials to get good microwave dielectric properties due to their moderate dielectric value and positive τf [6,11, 12,19-24]. The selection of materials for composite is essential to know its structural and microwave dielectric properties in detail.

Numerous efforts have been paid to improve the microwave dielectric properties of CaTiO3 ceramics [16,25-29]. A recent paper reports on the structural and microwave dielectric properties of Zr4⁺ doped CaTiO3 ceramics [16]. The approach of creating a new single-phase compound with desirable dielectric properties is uncommon, although this is more important and easier for obtaining suitable microwave dielectric parameters. We have not come across any detailed reports about the single phase Ca0.8Sn0.2TiO3 and Ca0.6La0.8/3TiO3 ceramics in the literature.
Keeping these in mind, we have synthesized the single phase samples of CaTiO₃, Ca₀.₈Sr₀.₂TiO₃ and Ca₀.₆La₀.₄/₃TiO₃ ceramics using solid state reaction method. The structural and microwave dielectric properties of these ceramics have been reported in this paper. The preliminary aim of this work is to achieve comparatively low positive ε_r with good combination of microwave dielectric properties so that composites with nearly zero ε_r value and higher quality factor can be achieved.

2. Experimental details

In this work, the well known solid state reaction (SSR) method was employed for sample preparation. In this work, CaCO₃ (99.9%, Sigma-Aldrich), TiO₂ (99%, Merck), SrCO₃ (99.9%, Aldrich) and La₂O₃ (99.9%, Loba Chemie) were used as starting chemicals. The starting materials were mixed according to the stoichiometric ratio for 24 h using an ordinary ball mill. The precursors were dried separately and calcined at 1100°C for 4 h with heating rate of 5°C min⁻¹. The samples were cooled down with natural cooling. Cylindrical pellets were then made by mixing the obtained powder with 3 wt% of a 10% polyvinyl alcohol solution. This can be achieved by pressing the resulting powder into a pellet at pressure normally 8 tons to 10 tons per square inch. For CaTiO₃ (CT) and Ca₀.₈Sr₀.₂TiO₃ (CST), the sintering temperature was 1250°C whereas Ca₀.₆La₀.₄/₃TiO₃ (CLT) was sintered at 1350°C for 4 h. The heating rate was 5°C min⁻¹ and samples were cooled down naturally. The X-ray diffraction (XRD) analysis was performed at room temperature using an X-ray diffractometer (model Bruker D8 Advance). Data were taken for the range 20° ≤ 2θ ≤ 80°, and the step size was 0.02. The structural analysis was performed using the Rietveld refinement technique [30] and FullProf software.

The room temperature Raman spectra were acquired in backscattering geometry using an argon ion laser source for the range of 100 cm⁻¹ to 3300 cm⁻¹ and the step size was 0.02. The structural analysis was performed at room temperature using a digital electronic balance. A glass beaker with the sample immersed in distilled water was kept in a vacuum chamber for 2 h. In this process, the pores present in the pellet were completely filled with water. The weight of the pellet was again taken and interpreted as soaked weight (W). In second step, the sample was suspended in water with the help of a hanger to hang the pellet in water and the measured weight was interpreted as suspended weight (I). The apparent density $\rho_{apparent}$ was calculated using the Archimedes principle [19]:

$$\rho_{apparent} = \frac{D}{W - I}$$

(1)

The Hakki-Coleman dielectric resonator technique was used to determine the microwave dielectric characteristics [31]. The temperature coefficient of resonant frequency (τ) values were calculated as follows [4]:

$$\tau = \frac{f_2 - f_1}{f_1(T_2 - T_1)}$$

(2)

Where f_1 and f_2 are the resonant frequencies at two different temperatures T_1 (∼25°C) and T_2 (∼85°C), respectively.

3. Results and discussions

The XRD patterns of CT, CST, and CLT samples, taken at room temperature, are illustrated in Figure 1. The XRD analysis confirms the single phase formation of CT, CST, and CLT ceramics without additional impurity peaks. The primary study shows that the grown ceramics consist of an orthorhombic perovskite structure. The XRD patterns are indexed with the JCPDS database and observed to match well with orthorhombic structure (JCPDS card no. 89-4466). The XRD patterns of CST and CLT samples show good agreement with previous reports [32,33]. Inset shows the XRD patterns for 20 = 32.3-33.5°. As evident from Figure 1, the peaks of CST and CLT ceramics shift towards the lower angle. The relative intensities of the small peaks decrease gradually, and there are no such peaks for CT ceramic. Such shifting of peaks indicates that the unit cell volume of CST and CT ceramics is larger than the unit cell volume of CT, which confirms that the Sr and La substitution on Ca-site causes an upsurge in unit cell parameters and volume. The crystallite size (D) was measured using Debye Scherrer method [34-36]:

$$D = \frac{0.9 \lambda}{\beta \cos \theta}$$

(3)

Where λ is defined as the wavelength of Cu-Kα radiation. The terms θ and β are defined as diffraction angle and the line broadening, respectively, at FWHM of the XRD, after subtracting the instrumental line broadening (in radian). The average crystallite size of CT, CST and CLT are found to be 90.39 nm, 108.49 nm and 96.73 nm, respectively. In the inset of Figure 1, there are some distinct shoulder peaks observed for CT and CST samples, however, these shoulder peaks are disappeared in case of CLT. It seems that the peaks corresponding to (112) and (020) planes of CLT ceramic have been merged.
The Rietveld refinement analysis was used to look into the precise description of structural properties. The refinement results of all three samples are graphically given in Figures 2(a-c). The XRD data of the CT sample were refined assuming the orthorhombic GdFeO$_3$-type structure [37], and the obtained results are demonstrated in Figure 2(a). Successful refinement confirms that the lattice structure of CT ceramic is orthorhombic with $Pbnm$ space group and lattice parameters: $a = 0.53869$ nm, $b = 0.54457$ nm, and $c = 0.76480$ nm. The refinements have produced satisfactory R-factors: $R_p(\%) = 7.78$, $R_{wp}(\%) = 19.3$, $R_{Bragg}(\%) = 11.6$ and $R_{Bragg}(\%) = 4.16$. Figure 2(b) depicts the CST refinement findings graphically. The atomic and lattice properties of beginning member CT with the $Pbnm$ space group were used in the refining procedure. The stoichiometric ratio was used to determine the occupancy factors for the mixed Ca and Sr sites.

The structural analysis confirms that the CST ceramic possesses $Pbnm$ space group with an orthorhombic structure and lattice parameters are $a = 0.54276$ nm, $b = 0.54549$ nm, and $c = 0.76899$ nm. Figure 2(c) represents the final output after structural refinements of the CLT ceramic. The refinement is done by taking the atomic and lattice parameters of CT with the $Pbnm$ space group. The Ca and La displacement parameters have been constrained to be equal. Previously, we found that the CLT structure is cubic, and the final value of R_{Bragg} and the goodness of fit indicator, X^2 were decreased to 15.3% and 2.81%, respectively [20]. According to the Raman spectroscopy results of CLT, we tried to perform the Rietveld refinement of CLT and found it to be best fitted as an orthorhombic phase of space group $Pbnm$ with lattice parameters $a = 0.54804$ nm, $b = 0.54929$ nm, and $c = 0.77512$ nm (Table 1). All R-factors for the CLT system are lowered than those for the cubic structures of the system. The final weighted R-factors, R_{wp}, and the goodness of fit indicator, X^2 were decreased to 15.3% and 2.81%, respectively. So CLT can be fitted as cubic or orthorhombic, which may be due to the LaTiO$_3$, which has two types of structure; cubic and orthorhombic as per JCPDS card no. 84–1089 and 75–0267, respectively. But from Rietveld and Raman spectroscopy analysis, it can be concluded that CLT can be considered as an orthorhombic phase rather than a cubic. The VESTA program (v.3.0 for Windows) is employed to display unit cell structures (Figure 3).

In these figures, blue-colored portions of Ca atoms demonstrate the amount of Sr or La substitutions, respectively. Table 1 illustrates that the lattice parameters and unit cell volume are found to increase as the average A-site cation radius increases, which is in agreement with previous reports [29,37]. It is a well-known fact that the substitution of a larger ion enlarges the unit cell in all three directions. As a result, the volume of the unit cell enhances in the same space. However, no structural phase transition related to increasing A-site radius has been found in this system. It is also found that the Ti-O(1) bond length increases, and the average Ti-O(2) bond length decreases with Sr and La substitutions.

If the crystallite size is small enough to expand the XRD peaks, qualitative analysis employing XRD data is challenging (Figure 1). As a result, the use of Raman spectroscopy to confirm the phase identification of these powders was suggested. In order to determine the phase, Raman spectroscopy was adopted as a supplemental approach [38]. Four molecular units in the primitive cell, arranged in the orthorhombic structure with $Pbnm$ space group, shows 24 Raman active modes. These modes are designated as: $T_{\text{Raman, } Pbnm} = 7A_g + 7B_{1g} + 5B_{2g} + 5B_{3g}$ [39,40]. Several modes cannot be detected due to low polarizability. The unpolarized Raman spectrum of CT ceramic has only nine Raman modes, as shown in Figure 4(a). The spectrum shows two broad bands at 150 cm$^{-1}$ to 550 cm$^{-1}$ and 550 cm$^{-1}$ to 750 cm$^{-1}$. The first band comprises various sharp peaks, which are assigned to the first order Raman bands [41]. The broadness of bands is related to second order scattering. The A_g mode (158 cm$^{-1}$) corresponds to Ca-TiO$_6$ lattice mode. The modes A_g (182, 226, and 286 cm$^{-1}$), B_{1g} (247 cm$^{-1}$), and B_{2g} (337 cm$^{-1}$) are assigned to O-Ti-O bending modes. The modes A_g (471 cm$^{-1}$), B_{1g} (454.9 cm$^{-1}$ and 495 cm$^{-1}$) are related to Ti-O$_6$ torsional modes. The spectrum of CST contains 8 Raman modes in the range of 100 cm$^{-1}$ to 1000 cm$^{-1}$, as revealed from Figure 4(b). It is reported that the Raman active modes are absent in cubic structured SrTiO$_3$ with $Pm3m$ space group; its spectrum consists of two strong and broad second order Raman bands situated at 200 cm$^{-1}$ to 500 and 600 cm$^{-1}$ to 750 cm$^{-1}$ [39]. For the CT ceramic, the O-Ti-O bending modes are observed at bands A_g(169, 209, and 282 cm$^{-1}$), B_{1g}(232 cm$^{-1}$), and B_{2g}(330.2 cm$^{-1}$).
The other bands, $A_g (466.9 \text{ cm}^{-1})$, $B_{1g} (454.9 \text{ and } 488.1 \text{ cm}^{-1})$, are assigned to Ti-O$_6$ torsional modes, and all modes belong to orthorhombic structure [42]. In comparison with the bands of the CT sample at 247 cm$^{-1}$ and 471 cm$^{-1}$, the corresponding bands of the CST sample shift to some lower values 232 cm$^{-1}$ and 467 cm$^{-1}$. Qin et al have also observed similar findings [32].

It is also observed that the shifting of lower frequency modes is larger than that of the higher frequency range. The degree of crystallization, structural defects, interaction force between ions, and influence of doping ions can be responsible for observed characteristic Raman modes [43]. Figure 4(c) demonstrates that the perovskite structure of CLT consists of 8 Raman modes. The Raman band B_{2g} (115 cm$^{-1}$) is assigned to the Ca-TiO$_3$ lattice mode. The bands, A_g (163 cm$^{-1}$ and 285 cm$^{-1}$), B_{1g} (219.5 cm$^{-1}$), and B_{3g} (330.8 cm$^{-1}$), are related to O-Ti-O bending modes. The band A_g (461.2 cm$^{-1}$) is assigned to Ti-O$_6$ torsional modes. The band at 796.5 cm$^{-1}$ is associated with B_{2g} mode. Raman bands of LaTiO$_3$ are related to bands at 399.6 cm$^{-1}$ and 513.8 cm$^{-1}$. The band at 796 cm$^{-1}$ may be linked with local vibrational modes of the La$^{3+}$ containing complexes with different configurations. A similar type of explanation is also given in the paper of Huong et al. [44].

The SEM is used to investigate the morphological analyses of grown ceramics; the results are shown in the Figures 5(a-c). The grains are of various sizes, as seen in these diagrams. Different-sized grains are formed at the A–site because the diffusion rates of the two ions differ. Inhomogeneous grain sizes can be caused by the structural disorder, lattice strain caused by a change in ionic radii, and clustering in the particles integrated at the A–site. Table 2 contains the values of apparent density, theoretical density, and relative density of the samples. Theoretical density has been calculated using XRD data with the help of the Rietveld refinement method. The apparent density was determined using the Archimedes method. The ratio of these two values gives the relative density of the sample. It is found that the density of CST and CLT is higher than that of CT, which is because the atomic weights of Sr and La are higher compared to the atomic weight of Ca. From Table 2, it is evident that the relative density of grown ceramics (CT, CST, and CLT) is more than 90%.

![Figure 3. Schematic representation of (a) CT, (b) CST, and (c) CLT unit cells with orthorhombic structure.](image-url)
The microwave dielectric properties of CT, CST, and CLT ceramics are listed in Table 3. The CST sample exhibits higher ε_r and high $Q \times f$ as compared to the same for CT, whereas the CLT sample shows lower ε_r and high $Q \times f$. The $\varepsilon_{\text{theory}}$ value of CST is larger than that of CT because of the greater ionic polarizability of Sr (4.24 Å) than that of Ca (3.16 Å) [29]. Hence CST ceramic shows a higher ε_r than that of CT. Due to Sr$^{2+}$ content, a strong vibration of the atoms occurs in the lattice, resulting in enhancement of the ionic polarizability, which causes a decrease in the dielectric loss [28,45,46] and hence the $Q \times f$ value increases for CST as compared to that for CT ceramic. On the other hand, the ε_r of CLT is less as compared to CT. In the case of CLT ceramic, the La$^{3+}$ ion is doped at Ca-site (Ca$^{2+}$). The charge neutrality of the structure is maintained by the formation of crystal distortions and cationic vacancies. As a result, ionic polarizability and anharmonicity associated with ion mobility tend to diminish, lowering, which decreases the dielectric constant [26,47]. The τ_f values of CT, CST, and CLT ceramics are found to be 796.69, 908.17, and 229.49 ppm/K, respectively. It is also important to note that out of these three samples, the CST sample has the highest value of relative density and permittivity. It signifies that density has an important role in getting the permittivity value which basically defines the ability of the sample to store the electrical energy in an electric field. The temperature variation of the resonant frequency originated mainly from the temperature dependence of the ε_r. It is predicted that the τ_f behavior is related to the crystal lattice distortion, which depends on the changes in charge and size of A-site ions. Also, the τ_f values are significantly impacted by the structural phase transitions [48,49]. The distortion of the structure increases if there is symmetry loss at the structural transition, which encourages a reduction in τ_f values. The dependence of microwave dielectric parameters on the grain boundaries of the samples is not very clear in this study. We have reviewed the dielectric parameters of similar compositions and added some data in Table 3, where we find that for CT and CST we have achieved comparatively low positive τ_f and large quality factor.
Table 2. Density results of CT, CST, and CLT samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>ρ_{theo} (g/cm3)</th>
<th>ρ_{apparent} (g/cm3)</th>
<th>ρ_{relative} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>4.026</td>
<td>3.859</td>
<td>95.852</td>
</tr>
<tr>
<td>CST</td>
<td>4.424</td>
<td>4.281</td>
<td>96.768</td>
</tr>
<tr>
<td>CLT</td>
<td>5.040</td>
<td>4.734</td>
<td>93.929</td>
</tr>
</tbody>
</table>

Table 3. Microwave dielectric parameters of CT, CST, and CLT samples.

<table>
<thead>
<tr>
<th>Samples</th>
<th>ε_r</th>
<th>$Q \times f$ (GHz)</th>
<th>τ (ppm/°C)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>145.97</td>
<td>4,020</td>
<td>796.69</td>
<td>This work</td>
</tr>
<tr>
<td>CST</td>
<td>168.93</td>
<td>9,330</td>
<td>908.17</td>
<td>This work</td>
</tr>
<tr>
<td>CLT</td>
<td>113.35</td>
<td>16,730</td>
<td>229.49</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td>117.4</td>
<td>13,375</td>
<td>217.2</td>
<td>Conventional sintering [50]</td>
</tr>
<tr>
<td></td>
<td>119.6</td>
<td>17,858</td>
<td>155.5</td>
<td>Microwave sintering [50]</td>
</tr>
</tbody>
</table>

4. Conclusions

Polycrystalline dielectric materials (CT, CST, and CLT with positive τ) were successfully prepared by the solid-state reaction method. The crystal structures and phase formation were systematically examined using the Rietveld refinement method. The structural analysis confirms that the CT, CST, and CLT ceramics show an orthorhombic perovskite structure. The average crystallite size of CT, CST and CLT are found to be 90.39 nm, 108.49 nm and 96.73 nm, respectively. The presence of single-phase compositions is also verified by Raman analysis. Microstructural analysis of grown ceramics demonstrates well defined grains and grain boundaries with 90% relative density. A standard Hakki-Coleman method was used to measure microwave dielectric properties. Changes in ionic polarizability, electronic polarizability, and A-site substitutions are linked to dielectric characteristics. The CST ceramic exhibits higher ε_r (168.93) and $Q \times f$ (9,330 GHz) values, whereas the CLT sample shows lower ε_r (113.35) and higher $Q \times f$ (16,730 GHz), as compared to the same for CT ($\varepsilon_r \approx 145.97$, $Q \times f \approx 4,020$ GHz). Substitution of Sr ion at Ca-site gives an enhanced positive τ value (908.17 ppm/°C), whereas La substitution provides decreased positive τ value (229.49 ppm/°C) than that of pure CaTiO$_3$ (796.69 ppm/°C). The CST sample has the highest value of relative density and permittivity, signifying that it can store more electrical energy compared to other two, in the presence of an electric field. It is important to note that the CLT sample shows the comparatively low positive τ value with higher quality factor. It can be mixed with ceramics of negative τ value (e.g. MgTiO$_3$-based ceramics) in order to get nearly zero τ values with good combination of microwave dielectric properties. Such composites can be used in dielectric resonator antenna (DRA), which are useful for different fields of microwave communication.

Acknowledgements

The authors are thankful to the members of Central Instrumentation Facility Lab, Birla Institute of Technology, Mesra for providing SEM and EDX facilities.

Conflict of interest

The authors declare no financial or commercial conflict of interest.

References

[20] Y.-C. Chen, H.-X. Liu, C.-H. Li, J.-Y. Fu, and Y.-C. Cheng, "Influence of Ca0.8Sr0.2TiO3 on the microstructures and microwave dielectric properties of Nd0.65Yb0.35(Mg0.5Sn0.5)3O5 ceramics," Ferroelectrics Letters Section, vol. 42, pp. 1-9, 2015.

[42] T. Hirata, K. Ishioka, and M. Kitajima, "Vibrational spectroscopy and X-ray diffraction of perovskite compounds Sr$_{1-x}$M$_x$TiO$_3$ (M = Ca, Mg; 0 ≤ x ≤ 1)," *Journal of solid state chemistry*, vol. 124, pp. 353-359, 1996.

[47] A. Bisen, A. Satapathy, S. Parida, E. Sinha, S. Rout, and M. Kar, "Structural, optical band gap, microwave dielectric properties and dielectric resonant antenna studies of Ba$_{1-x}$La$_{x}$ZrO$_3$ (0 ≤ x ≤ 0.1) ceramics," *Journal of alloys and compounds*, vol. 615, pp. 1006-1012, 2014.

