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Abstract 

 
This research has studied the effect of precipitation aging temperatures on size and area density ofγ' – 

particles of the reheat treated microstructures incast nickel basesuperalloy, grade Udimet-500. All specimens 
were performed the same solutioning treatment at temperature of 1,150°C for 4 hours following with various 
precipitation aging temperatures of 760, 780, 800 and 820°C for 16 hours. Furthermore, these reheat treated 
specimens were also performed long-term heating at temperatures of 900°C and 1000°C for 200 hours to 
evaluate γ'-phase stability. Finally, hardness measurements were also carried out. Form all obtained results, 
it was found that the standard precipitation aging temperature of 760°C for 16 hours provided the most phase 
stability after long-term tests as well as the maximum hardness. 
 
Introduction 
 

Udimet-500 is one of cast nickel based 
superalloysused gas turbine blade material in gas 
turbine enginesfor electricity generating. After long-
term service, themicrostructure of the alloy, which 
consists of gamma (γ), gamma prime(γ') and/or 
carbides would be detrimentallydegraded leading to 
much lower mechanical propertiesat high temperatures. 
However, these kinds of γ' precipitated strengthening 
materials could be microstructallyrestored by rejuvenation 
heat treatment, which basically consists of 
solutioning treatment and precipitation aging to 
provide the microstructural refurbishment as same 
as the news ones.(1-4) 
 
 The research will study the effect of precipitation 
aging temperatures in final microstructures in 
terms of size and area density of γ'-particles as well 
as the effect of these obtained microstructural 
characteristics on hardness behavior. Furthermore, 
the long-term heating at high temperatures were 
also performed to evaluate the γ'-phase stability at 
long-term exposures in Udimet-500. 
 
Materials and Experimental Procedures 
 
 The investigated material is cast nickel-
based superalloy, grade Udimet-500, a turbine blade 
 
 
 

material in gas turbine engines, which was used at high 
temperatures for 50,000 hours by Electricity  
Generating Authority of Thailand (EGAT). The 
chemical composition of the alloy shown in Table 1. 
 
Table 1. The chemical composition of cast nickel-base 
 superalloy, grade Udimet-500 
 

Elements Ni Cr Co Ti W Al Ta Mo Fe C B Zr 

Weight 
Percent 
(%wt.) 

Bal. 18 17 3 - 3 - 4 2 0.1 - - 

  
The alloy was performed with various reheat 

treatment processes as following: 
1. Solution treatment at temperature of 

1,150°C for 4 hours then following with air 
cooling. 

2. Precipitation aging at temperatures of 760, 
780, 800 and 820°C for 16 hours then following 
with air cooling.   

 
 Then these received specimens after various 
reheat treatment conditions were prepared with 
cutting, grinding, polishing and etching for 
metallography analysis by Scanning Electron 
Microscopy (SEM). Furthermore, to investigate 
and evaluate the γ'-phase stability then all reheat 
treated specimen were performed with long-term 
heating tests at temperatures of 900°C and 100°C 
for 200 hours. Then these obtained specimens were 
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Figure 9. Microstructures of specimens after aging at  
                    various temperatures then heating at higher 
                   temperature  
                at 1,000°C for 200 hours. 

 
Figures 9 a) – d) show the microstructures of 

specimen with various reheat treatment conditions 
following with long-term heating at 1,000°C for  
200 hours. The received results clearly show the 
much higher effect of higher heating temperature 
on γ'-particle coarsening than those of figures 6a) – 
6d). There is also the same trend asit was found in 
long-term heating 900°C for 200 hours that the 
higher aging temperatures (800 and 820°C/16 
hours) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

resulted in rapidly increasing of both size and area 
density of γ'-particle, see also figures 10 and 11. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. The relationship between γ’ particles size  and 
                      various agingtemperatures and heating at 
                    1000°C/200 hours. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. The relationship between γ’ area density and 
                      various agingtemperatures and heating at 
                    1000 °C/200 hours. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     a) Aging at 760°C/16 hours 
         and heating  
     b) at 1,000°C /200 Hrs. 

b) Aging at 780°C/16 hours and 
     heating at 1,000°C/200 Hrs. 

c) Aging at 800°C/16 hours and
    heating at 1,000°C/200 Hrs. 

d) Aging at 820° /16 hours and  
    heating at 1,000°C/200 Hrs. 
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Form overall results re-expressed in Figures 

12 and 13, which show the effects of aging 
temperatures and long-term heating temperatures 
on size (average area of γ’-particle) and γ’-phase 
area density, respectively. It could be summarized 
that long-term heating at high temperatures 
provided 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
much more effect of both very rapid γ’-particle 
coarsening and increasing in γ’-phase area density. 
This result was much more pronounced when  
the specimens were performed with the higher 
precipitation aging temperatures of 800 and 820°C 
for 16 hours.  
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Figures 14 and 15 show the obtained 

hardness results from specimens with various 
reheat treatment conditions and long-term heating 
tests. From these obtained results, it was found that 
the higher of precipitation aging temperatures 
resulted in lower hardness values. Furthermore, it 
was also found that  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the higher heating temperature resulted in much 
lower hardness values.(6-10) From these, it could be 
concluded that the hardness ismore dependanton 
the size of γ’-particle much more than the γ’-phase 
area density, which usually provides higher 
hardness, see details in Figures 16 and 17.  
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Conclusions 
 

1. Higher precipitation aging temperature 
provided higher results in size and area density of 
γ'-particles but lower in hardness. 

2. Higher heating temperature provided also 
both increasing in size and area density of γ'-
particles but decreasing in hardness. 

3. The effect of size of γ'-particles on 
hardness was much more pronounced than that of 
γ'-phase area density. 

4. The lowest precipitation aging (standard 
aging temperature) form temperature even 
provided the lowest area density and size of γ'-
particles but  
resulted in the highest hardness and the most γ'-
phase stability after long-term heating tests. 
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