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Abstract 
In the hot-rolling process, steel was subjected to high temperatures which results in the formation 

of an oxide layer called scale. The oxide scale can be affected to the surface characteristic of the hot-
rolled steel product. The scale must be completely removed from the surface of the steel before 
further processing. This research aimed to examine the adhesion behavior of scale on hot-rolled steel 
with different silicon contents (0.01, 0.12, 0.18, and 0.29 wt%) using a tensile testing machine with 
an observation setup. The results showed that the scale thickness decreased with increasing silicon 
content in the range of 9 µm to 12 µm. The scales were composed of hematite and magnetite. The 
results of the tensile test showed that the strain initiating the first spallation and the mechanical 
adhesion energy tend to increase with increasing silicon content. However, it decreased by 0.29 wt% Si 
hot-rolled steel. This result indicates that scale was difficult to remove after the hot rolling process 
for higher Si-containing steel.   

1. Introduction 
 

An oxide scale, also known as an oxide layer, forms on the steel 
surface during the hot rolling process. This scale should be removed 
before the next process, e.g. cold rolling process. Due to the scale 
significantly impacts to the surface quality of the final products. 
The mechanical properties of hot-rolled steel are improved by alloying 
element, e.g. Si, Cu, Ni, Sn, S, P, etc. Steel is alloyed with various 
elements to improve its strength, ductility, electrical conductivity, 
corrosion resistance, and other properties. During the hot rolling 
process, the scale is usually removed via high-pressure water (150 bar 
to 160 bar) [1-5]. Iron-oxide scale is mainly produced during the hot-
rolled steel surface exposed to air atmosphere and always formed on 
the steel surface during the process until the hot-rolled coil product 
[6-14]. The characteristic of the oxide scale depends on the alloying 
element [15-19], hot rolling temperature [20-24], atmosphere, rolling 
speed, reduction per pass, etc. The presence of Si in the hot-rolled steel 
considerably impacted the formation and adhesion of the thermal 
oxide scale during the hot-rolling process. The de-scaling process 
is affected by this scale. The picklability of the oxide scale on steel 

substrate assess via an immersion test [25,26]. The scale adhesion 
has been measured by various techniques such as an indentation test 
[27,28], the tensile test [29-33]. This study aimed to assess the effect 
of Si content in the hot-rolled steel on the mechanical adhesion of the 
oxide scale by using a tensile testing machine with an observation set 
(CCD camera). 

 
2.  Experimental  
 
2.1  Materials 
 

Table 1 presents the chemical composition of the studied steel. 
The as-received hot-rolled steel is different in Si content as 0.010, 
0.125, 0.188, and 0.292 wt% with the other alloying elements tend 
to be similar. The steel is obtained from Sahaviriya Steel Industries 
Public Company Limited (SSI) as strips with a thickness of 3.2 mm. 
The hot-rolling process produced the hot-rolled steel strips with 
a finishing temperature of 860℃ and a coiling temperature in range 
of 630℃ to 650℃.

 
Table 1. Chemical composition of the hot-rolled steel. 
 
Hot-rolled steel Composition (wt%) 

C Si Cu Mn P S Fe 
0.013 wt% Si 0.170 0.013 0.009 1.047 0.020 0.007 Balance 
0.125 wt% Si 0.135 0.125 0.011 0.900 0.015 0.003 Balance 
0.188 wt% Si 0.120 0.188 0.031 1.395 0.022 0.022 Balance 
0.293 wt% Si 0.164 0.293 0.022 1.163 0.023 0.010 Balance 
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2.2  Characterization 
 

The oxide scale morphology is observed by using a scanning 
electron microscope (SEM, Quanta 450) with energy-dispersive X-ray 
spectroscopy (EDS). The oxide scale compound is analyzed by using 
X-ray diffraction (XRD, Smart Lab) with Cu Kα (λ = 0.15406 nm), 
a step size and step time of 0.02 degree/step and 0.5 second/step 
respectively. 
 
2.3  Adhesion test 
 

The tensile testing machine (Model 5566) with an observation set 
(CCD camera) is used to study the scale adhesion on the as-received 
hot-rolled steel. The tensile testing machine with a tension load of 
10 kN and a strain rate of 0.04 s-1 are performed. A CCD camera equipped 
with a high-magnification lens is selected to monitor the progression 
of scale failure during the tensile test. The image processing software 
is used to evaluate the image. The tensile test sample is prepared by 
following the ASTM E8M standard with 2 mm of thickness via a laser 
cutting machine. The tensile test setup and specimen shape are shown 
in Figure 1.   
 
3.  Results and discussion 
 
3.1  Oxide scale characteristic 
 

Figure 2 shows the scale thickness of the as-received hot-rolled 
steel. The scale thickness was directly measured from the cross-
sectional SEM image by measuring five positions. The scale thickness 
tends to decrease with increasing Si content in the steel. The result 
shows the scale thickness of 0.01 wt% Si steel was 11.30 ± 0.68 μm. 
The scale thickness of 0.12 wt% Si steel was 10.47 ± 0.43 μm. The 
scale thickness of 0.18 wt% Si steel was 10.05 ± 0.79 μm, and the 
scale thickness of 0.29 wt% Si steel was 9.53 ± 0.46 μm. 

For 0.01 wt% Si steel, Figure 3 shows SEM image, Figure 4 shows 
EDS pattern at interface, and Figure 5 shows XRD pattern. The result 
showed that the scale thickness was 11.30 ± 0.68 μm with hematite 
(Fe2O3) and magnetite (Fe3O4) layers. At steel-scale interface, peaks 
of C, O, Fe, and Mn were observed. It can be noted that the peak of 
Si was not observed at interface. 

For 0.12 wt% Si steel, Figure 6 shows SEM image, Figure 7 shows 
EDS pattern at interface, and Figure 8 shows XRD pattern. The result 
showed that the scale thickness was 10.47 ± 0.43 μm with hematite 
(Fe2O3) and magnetite (Fe3O4) layers. At steel-scale interface, peaks 
of C, O, Fe, Mn, and Si were observed.  

For 0.18 wt% Si steel, Figure 9 shows SEM image, Figure 10 
shows EDS pattern at interface, and Figure 11 shows XRD pattern. 
The result showed that the scale thickness was 10.05 ± 0.79 μm with 
hematite (Fe2O3) and magnetite (Fe3O4) layers. At steel-scale interface, 
peaks of C, O, Fe, Mn, and Si were observed.  

For 0.29 wt% Si steel, Figure 12 shows SEM image, Figure 13 
shows EDS pattern at interface, and Figure 14 shows XRD pattern. 
The result showed that the scale thickness was 9.53 ± 0.46 μm with 
hematite (Fe2O3) and magnetite (Fe3O4) layers. At steel-scale interface, 
peaks of C, O, Fe, Mn, and Si were observed. 

From the results, the silicon content was affected to scale formation 
of the hot-rolled steel. The scale thickness was decreased with increasing 
Si content in the hot-rolled steel. This was due to the Si element can be 
easily oxidized at a high temperature more than the other alloying 
element. It affected to form silicon oxide (SiO2) at the steel-scale 
interface during initial oxidation. This layer may exhibit as a barrier 
for Fe and O to oxidize. It was seen that the higher Si-containing steel 
had a lower scale thickness. Furthermore, the presence of SiO2 barrier 
layer at the steel-scale interface affects 0.29 wt% Si hot-rolled steel 
by inducing discontinuous scale morphology.   
 

 

 

Figure 1. Tensile testing machine with an observation setup (a), and a specimen 
shape (b). 

 

 

Figure 2. Oxide scale thickness of the Si-containing hot-rolled steel. 
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Figure 3. SEM image of 0.01 wt% Si steel. 
 

 

Figure 4. EDS pattern at steel-scale interface of 0.01 wt% Si steel. 
 

 

Figure 5. XRD pattern of 0.01 wt% Si steel. 
 

 

Figure 6. SEM image of 0.12 wt% Si steel. 

 

Figure 7. EDS pattern at steel-scale interface of 0.12 wt% Si steel. 
 

 

Figure 8. XRD pattern of 0.12 wt% Si steel. 
 

 

Figure 9. SEM image of 0.18 wt% Si steel. 
 

 

Figure 10. EDS pattern at steel-scale interface of 0.18 wt% Si steel. 
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Figure 11. XRD pattern of 0.18 wt% Si steel. 
 

 

Figure 12. SEM image of 0.29 wt% Si steel. 
 

 

Figure 13. EDS pattern at steel-scale interface of 0.29 wt% Si steel. 
 

 

Figure 14. XRD pattern of 0.29 wt% Si steel. 

3.2  Oxide scale adhesion 
 

After tensile test, the scale adhesion can be described by the strain 
at the first spallation of scale. The oxide scale was spalled out of the 
steel substrate under tension loading. During the tensile test, stress 
was applied to the specimen until the stress exceeded the adhesive 
force between the scale and steel substrate. As a result, the oxide scale 
can be spalled. This was an important parameter for comparing the 
adhesion of hot-rolled steel with different silicon content. If the 
adhesion of scale was lower, the strain initiation of the first spallation 
was rapidly observed. Figure 15 shows strain initiating the first 
spallation of the Si-containing hot-rolled steel. It was found that the 
strain initiation the first spallation tended to increase with increasing 
silicon alloying content. However, the strain initiation the first spallation 
was decreased for 0.29 wt% Si steel. The strain initiation the first 
spallation of 0.01 wt% Si steel was 3.00 ± 0.45 %, for 0.12 wt% Si 
steel was 5.02 ± 0.59 %, for 0.18 wt% Si steel was 5.23 ± 0.20 %, 
and for 0.29 wt% Si steel was 4.68 ± 0.37 %. This variable can be used 
to calculate the mechanical adhesion energy of the scale on steel 
substrate. 

As the strain at the first spallation, the mechanical adhesion energy 
was calculated by using Equation (1) [34,35]. The mechanical adhesion 
energy equation consists of stored energy (W) and oxide scale thickness 
(§). The strain at the first spallation was an important parameter used 
for calculating stored energy in oxide scale until the first spallation. 
The stored energy of oxide scale in x and y directions was considered 
by equation ∫𝜎𝜎 ∙ 𝑑𝑑𝑑𝑑 (the area under the stress-strain curve). Before 
the tensile test, the oxide scale and the steel substrate were assumed 
to be completely adhered. The parameters for quantifying the stored 
energy as follow, Young’s modulus of steel and oxide was 210 GPa, 
Poisson’s ratio of steel and oxide was 0.3, the compressive residual 
stress of oxide was – 0.2 GPa, and the strain at limit of elasticity of 
oxide was 0.0015. 

 
Gi   =  W⸳§  (1) 

 
Where  Gi =  Mechanical adhesion energy (J⸳m-2) 
 W =  Stored energy in oxide scale until the first spallation   (J⸳m-3) 

  §  =  Oxide scale thickness (m) 
 

 

Figure 15. Strain initiating the first spallation of the Si-containing hot-rolled steel. 
 



Examination of the adhesion of the scale formed on hot-rolled steel with different silicon content using a tensile test 
 

J. Met. Mater. Miner. 33(1). 2023   

25 

Table 2. Information about the Si-containing hot-rolled steel. 
 
Parameters Composition (wt% Si) 
 0.01  0.12  0.18  0.29  
Scale thickness (μm) 11.30 ± 0.68 10.47 ± 0.43 10.05 ± 0.79 9.53 ± 0.46 
Strain initiating the first spallation (%) 3.00 ± 0.45 5.02 ± 0.59 5.23 ± 0.20 4.68 ± 0.37 
Mechanical adhesion energy (J⸳m-2) 335.32 ± 0.31 902.19 ± 0.36 941.92 ± 0.11 711.01 ± 0.14 
Scale thickness (μm) 11.30 ± 0.68 10.47 ± 0.43 10.05 ± 0.79 9.53 ± 0.46 

 

Figure 16. Mechanical adhesion energy of the Si-containing hot-rolled steel. 
 
From there parameters, the calculated mechanical adhesion energy 

of the Si-containing hot-rolled steel was shown in Figure 16 with 
information in Table 2. It was found that the mechanical adhesion 
energy tends to increase with increasing silicon content, while decreasing 
at 0.29 wt% Si hot-rolled steel. The mechanical adhesion energy of 
0.01 wt% Si steel was 335.32 ± 0.31 J⸳m-2, for 0.12 wt% Si steel was 
902.19 ± 0.36 J⸳m-2, for 0.18 wt% Si steel was 941.92 ± 0.11 J⸳m-2, 
and for 0.29 wt% Si steel was 711.01 ± 0.14 J⸳m-2. From SEM-EDS 
results, an energy dispersive spectroscopy (EDS) was focused on 
steel-scale interface of their Si-containing steel. The EDS spectrum 
shows the peaks of C, Mn, Fe, O as well as Si for 0.12. 0.18, and 
0.29 wt% Si steel. Furthermore, it was found that the higher amount 
of Si presented at the steel-scale interface was 0.29 wt% Si steel. 
Since Si was most easily oxidized, silicon oxide (SiO2) was first formed 
at the steel-scale interface. According to literature [25], it was reported 
that the silicon oxide improves scale adhesion on steel substrate. 
However, that research studied steel with 0.026 wt% and 0.193 wt% Si. 
The result shows the 0.193 wt% Si steel exhibited higher scale adhesion 
than the 0.026 wt% Si steel. 

If silicon oxide forms a thick layer in the case of 0.29 wt% Si in 
this study. It may result in a decrease in scale adhesion. The compressive 
stress was increased by the thicker SiO2 layer formed at the steel-
scale interface of the 0.29 wt% Si during thermal oxidation in the 
hot-rolling process. For this reason, it was a matter of discussion as 
the scale formed on 0.29 wt% Si steel showed a slight decrease in 
adhesion to the steel substrate. 
 
4. Conclusions 
 

The adhesion behavior of the scale formed on hot-rolled steel 
with different silicon content by using a tensile test was studied. 

The iron oxide scale thickness tends to decrease with increasing silicon 
content due to the protective layer SiO2. The oxide scale was composed 
of hematite and magnetite. The mechanical adhesion energy of the 
oxide scale actually formed on Si-containing hot-rolled steel was 
shown to be in the range of 335 J⸳m-2 to 942 J⸳m-2. The high silicon 
content in hot-rolled steel tends to increase scale adhesion. Silicon 
should be added as low as possible for easy removal of scale in the 
de-scaling process for the hot-rolled steel industry. 
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