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ABSTRACT 

Usage of steel scrap has become important in steel making from the view points of resource 
conservation and preventing environmental problems. High levels of steel scraps are used in the production 
of steel, especially, via electric arc furnaces (EAF). However, Copper, which is mainly contained in the 
scrap of cars and home electronic appliance, is problematic in mechanical workings at elevated temperatures 
and limits the usage of scrap iron. It is enriched at steel/scale interface by preferential oxidation of Fe, which 
leads to liquid embrittlement or surface cracking during hot working. This type of defect is well known as 
surface hot shortness. Cu has been also reported to give surface cracking problem including transverse 
cracking in continuously cast products and has been found to be detrimental to surface quality. While nickel 
and silicon have been added to prevent hot shortness and cracking problem, tin, antimony and arsenic are 
detrimental. Silicon modifies scale of copper-bearing steels and promotes internal oxidation by the 
formation of 2FeO.SiO2 (fayalite). The evaluation techniques of hot shortness and cracking problem are also 
equally important and are mainly evaluated by hot tensile and hot bend test after oxidation. In addition to 
this, hot tensile test has been also used for evaluating hot ductility behavior and surface cracks of 
continuously cast products.  

 

Surface Hot Shortness of Steel 
Two forms of hot shortness are categorised 

by Melford.1, (i) liquation cracking, i.e., hot shortness 
in the bulk of the steel and (ii) surface hot shortness. 
Liquation cracking is a problem associated with 
enriched liquid phase at grain boundaries, which 
occurs when relatively insoluble residual elements 
(e.g. sculpture) are present in steel resulting in 
cracking. Surface hot shortness, on the other hand 
is caused by the enrichment of residual elements on 
the subsurface during oxidation which is liquefied 
and subsequently, penetrated into austenite grain 
boundaries. The focus of this work is surface hot 
shortness and therefore, no further attention will be 
given to liquation cracking. 
 
Residual Elements in Steels 

During steelmaking practice residual (or 
tramp) elements are metallic or metalloid elements 
that are not efficiently removed from the liquid 
metal and as a result may build up to relatively 
high levels with continued recycling.(2) Even the 
presence of a few hundredths to a few tenths of a 

percent of residual elements will have significant 
effect on particular critical properties of steel.(2) 
Elements such as Cu, Ni, Sn, Sb, Pb, As, S and P 
remain in steel because they cannot be preferentially 
oxidised during normal steelmaking processes.(1, 3) 

This can be understood using Ellingham diagram 
shown in Figure 1, in which the Gibbs free energies 
(in units of kJ per mole O2) of the relevant metal 
oxides are plotted as a function of temperature. 
When a steel billet/slab is reheated in an oxidising 
atmosphere, iron will oxidise to form a scale 
consisting primarily of FeO while copper and other 
elements whose oxides are less stable than FeO 
(i.e. oxides which are above FeO in the Ellingham 
diagram) will not oxidise. These elements will be 
enriched in the subsurface region of the steel. This 
build up adversely affects steel properties.(2) 
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Figure.1. Ellingham diagram for various oxides.(1)

Mechanism of hot shortness 
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The basic mechanism of surface hot shortness 
of Cu bearing steel is well known.(4-6) When a Cu 
bearing steel is oxidised, FeO is formed due to its 
relatively high stability.(4,5) As discussed above, the 
preferential oxidation of iron leads to enrichment 
of such as Cu, Ni, Sn, Sb, Pb, As, S and P at the 
steel/scale interface. When the enrichment of 
copper reaches a level exceeding the solubility 
limit in iron, a copper-rich phase precipitates at the 
scale/metal interface. The iron-copper phase 
diagram (Figure 2) indicates that the solubility of 
copper in austenite (γ) at 1096°C is 8.2 wt%. 
Melford(1) has reported that when only copper is 
present in steel, an enrichment level of over 9 wt% 
copper is quite possible under conditions of severe 
oxidation in the temperature range 1100-1200°C. 
This enriched liquefied phase will penetrate to the 
austenite grain boundary resulting in cracking. 

 
However, two contradictory views exist for 

hot surface cracking mechanism. One group of 
researchers have proposed that an applied stress is 
required for the material to be embrittled by the 
formation of a liquid copper-rich phase.(8-9) 
According to this group, a liquid copper-rich phase 
penetrates grain boundaries when the material is 
subject to tensile stresses. The other group of researchers 
have proposed that a liquid copper-rich phase 
penetrates grain boundaries during oxidation, i.e. in 
the absence of an applied stress.10-11 In the subsequent 
operation, i.e., during rolling the generated tensile 
stresses cause cracking. According to this group, 
cracks are formed in the reheating furnace and 
surface break-up occurs during hot rolling. They 
assume that defects are introduced into the material 
before hot rolling as pre-material defects.  
 
Factors affecting hot shortness 
 

The ease with which a copper-rich phase first 
precipitates at the scale/metal interface depends on 
the copper content in the steel, the solubility limit 
of copper in austenite, oxidation rate, the rate of 
copper diffusion and the rate of copper ‘back-
diffusion’ from the surface to the interior.(12) The 
rate of oxidation and back-diffusion are both 
diffusion controlled mechanisms and thus affected 
by temperature. The reported limiting copper 
content below which defects arising from surface 
hot shortness will not occur is commonly cited as 
0.2 wt% Cu.(12-13)  although values of 0.15 and 
0.3 wt% have also been reported. The surface 
cracking tendency on hot bend test specimen 
surfaces indicate that the severity increases with 
increasing copper levels.(14)  

 
 
 
 
 
 
 
 
Fig.2: 
 
 
 
 
 
Figure 2..  Iron-copper phase diagram.(7) 
  

The melting point of the copper-rich phase 
predicted from the iron-copper phase diagram is 
1096°C (Figure 2) and therefore, the surface hot 
shortness may be expected approximately above 
1100°C. In other words, no hot shortness problem 
will occur if the deformation temperature lower 
than the melting temperature of Cu. More frequently, 
hot shortness is observed in an intermediate 
temperature range of approximately 1100 - 1150°C. 
In this temperature range the copper-rich phase 
may penetrate metal grain boundaries, leading  
to their embrittlement during hot working. For 
temperatures above approximately 1200°C, the 
copper-rich phase is molten but mainly occluded 
into the scale layer. Nicholson and Murray.(15)  
have proposed that occlusion (or separation into 
the scale) occurs when internal oxides coalesce and 
join with the external scale, leading to engulfment 
of the enriched metal surface and copper-rich 
phase. Surface hot shortness is avoided in this 
situation since the molten copper-rich phase is 
isolated from the substrate. Figure 3 shows that 
internal oxides formed in 0.46Cu-0.22Ni steels 
after oxidised for 15 minutes at 1150°C.(16) 
 

In contrary to the above discussion, the 
melting point of Cu is affected by the presence of 
other elements. A copper-rich phase may remain 
molten at temperatures as low as 900°C when Sn is 
present .(1-17) Sn is also a ferrite stabiliser, which 
will reduce the solubility of Cu in austenite. 
 

Addition of nickel to a copper-bearing steel 
reduces the severity of cracking.(18-19) Ni increases 
the melting point of the copper-rich phase(15) apart 
from its beneficial effect of stabilising the austenite 
and increasing the solubility of copper in austenite, 
and thus, contributes to reducing cracking. 
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While Fisher(19) has pointed out that Ni : Cu 

ratios of 1.5-2.0 may be required to increase  
the solubility of Cu in austenite sufficiently to 
prevent the formation of liquid copper-rich phase, 
ratios of 1:1 or less can be effective by promoting 
internal oxidation and subsurface occlusion for 
temperatures as low as 1150°C. As reported by 
Kohsaka and Ouchi,(12) the critical Ni : Cu ratio  
for preventing surface cracking depends on the 
reheat temperature. The the occlusion mechanism 
is more pronounced at higher temperatures  
(i.e. where oxidation is more rapid), and therefore 
requires less nickel may be required to inhibit 
cracking at higher temperatures. Fukagawa and 
Fujikawa20 has reported that a low carbon 0.50% 
Cu-0.023%Ni steel oxidised in air at 1250°C or 
higher temperatures for 2 hours did not show any 
cracking while no surface cracking was observed at 
any temperature between 1100-13000C for the 
0.50%Cu-0.25%Ni steel. A copper-rich phase was 
observed for oxidation temperatures between 1100-
1200°C of 0.50%Cu-0.023%Ni steel while the less 
copper-rich phase was observed above 1200°C at 
the scale/metal interface. Fukagawa and Fujikawa20 
proposed that the copper-rich phase becomes 
occluded into the scale above 12000C. This 
inhibited surface cracking due to the markedly 
decrease in quantity of copper-rich phase at the 
metal/scale interface. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Appearance of internal oxides formed in 
                    0.46Cu-0.22Ni steels after oxidised for 15 
                    minutes at 1150°C(16) 
 

Similar to Ni, Si has been also found to be an 
effective alloying element in suppressing surface 
hot shortness cracking.(21-22, 5) Oxidation mechanism 
of Si containing Cu-bearing steels is modified by 
the formation of 2FeO.SiO2 (fayalite). Fayalite is 
formed from internal oxidation of the silicon in 
steel(22, 5) and can lead to the scale becoming partly 

liquefied, as fayalite has a melting temperature of 
1205°C and will form a eutectic with FeO (FeO-
2FeO.SiO2) at 1177°C(23) and with SiO2 (Fe2SiO4-
SiO2) at 1178°C23. In Si containing steel, formation 
of solid silicon-rich oxide has been attributed to 
increased levels of internal oxidation, and hence 
occlusion of copper-rich phase into the scale.(5) In 
other word, the presence of a solid silicon-rich 
oxide phase (Fe2SiO4 and/or SiO2) at the 
scale/metal interface inhibits the diffusion of iron 
from the metal to the scale.(5-23) Both of these 
aspects decrease the rate of oxidation which would 
therefore liberate less copper rich phase and 
decrease surface hot shortness.  

 
As reported by Lanteri et al.(23) the oxidation 

rates of binary Fe-Si alloys (silicon content up to 
1.42 wt%), oxidized in 1.8%O2-N2, were found to 
decrease with increasing silicon content below 
1177°C, while higher oxidation rates was reported 
above 1177°C, which was attributed to the 
presence of a liquid phase at the scale/metal 
interface. Although oxidation rate is high at higher 
temperature, leading to high metal loss but the 
surface hot shortness is minimised when a liquid 
subscale forms. This was analysed by Kajitani et 
al.(24) The authors attributed that decrease in 
surface hot shortness is due to increased levels of 
occlusion. The silicon rich liquid phase in the scale 
may take-up the liquid copper due to a reduction in 
the interfacial energy between the scale and the 
liquid copper as the scale was liquefied. 
 
Longitudinal and Panel cracking 
 

Although modern steel making process involves 
continuous casting of steel, over two third of world 
steel production currently follows the conventional 
ingot casting route, which will continue to be an 
important mode of steel production for atleast 
some decades to come. As   shown in Figure 4,(25) 
the formation of panel crack is one of the defects 
frequently appearing in the concave panel areas  
on fluted or corrugated ingots. This defect is also 
called longitudinal surface cracking, thermal stress 
cracking, cooling cracking, reheating cracking, 
phase transformation cracking, etc.(25) The reason 
of panel crack is attributed to a combination of 
reduced intermediate temperature (600-900ºC) 
ductility involving the presence of AlN precipitates 
and stress generation due to both thermal contraction 
and phase transformation.(25) Some of these aspects 
will be reviewed in details later. 
 

Internal oxide 
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Figure 6. Large transverse crack on narrow face(30) 

 
Lankford(30) has reviewed the source of stresses 

during continuous casting which can arise from a 
large number of different causes. These include 
transformation effects, thermal effects (variable 
heat transfer within the mould, temperature gradients 
within slabs, effects of cooling water sprays, contact 
with rollers, etc.), friction between strand and mould, 
bulging of the strand caused by ferrostatic pressure, 
mechanical effects due to misalignment of the 
casting machine, and straightening strains. Out of 
these, straightening strains is most important. This 
is because large transverse cracks are observed in 
the final straightened slab, together with the fact 
that these are often most numerous on the top 
surface of the slab (i.e. the surface which is in 
tension during straightening). This suggests that 
there is much crack propagation induced by the 
stresses experienced during the straightening process. 
When these stresses occur in the temperature range 
over which ductility is poor, the appearance of 
transverse cracking becomes severe.  

 
Furthermore, as suggested by Harada et.al.(26) 

the earliest stages of transverse crack formation 
occur in the mould, and are associated with 
segregation in the vicinity of oscillation marks. 

These oscillation marks are regions in which high 
degrees of segregation of elements such as S, P and 
Mn can occur and have a role in the nucleation of 
transverse cracks and would also tend to favour the 
propagation of cracks. The grain size may often be 
coarse beneath the oscillation mark, and the notch 
like geometry will also tend to concentrate stresses. 
 
High temperature ductility 
  

Low ductility regions are believed to be the 
cause of cracking during continuous casting of 
steel. Crowther(31)  has identified 4 distinct regions 
of low ductility as illustrated schematically in 
Figure 7. Those are  
Region I/Type I - Embrittlement by Incipient Melting 
Region IIa/Type IIa - Embrittlement by Second Phase 
Particles - (Mn,Fe)S 
Region IIb/Type IIb- Embrittlement by Second 
Phase Particles - Nb(CN), AlN, V(CN) 
Region III/Type III - Embrittlement by Transformation 
 

Region I has been identified to occur at high 
temperatures, typically 20-50°C below the mean 
solidus temperature.(31) Fracture surfaces are characterised 
by inter-dendritic failure and the presence of 
particles such as MnS. The segregation of elements 
such as S to inter-dendritic regions during solidification 
resulted in incipient melting and formation of 
many types of defect in cast products including 
longitudinal surface cracking. In this region, the 
small subsurface cracks have been observed 
associated with oscillation marks.(26-32) 
  

In the case of region II, the approximate 
temperature range is 1200-900°C depending on 
composition and test conditions.(31) The fracture 
propagates along austenite grain boundaries, and 
fracture surfaces show sometimes ductile dimples 
around the second phase particles in low ductility 
regions. These second phase precipitates are considered 
as (Mn,Fe)S for region IIa while Nb(CN), V(CN), 
Ti(CN) and AlN are associated in region IIb 
(Figure.7a). The high temperature end of this 
ductility trough is believed to be associated with 
the onset of recrystallisation. Nb delay recrystallisation 
more effectively than V either in solution or as 
precipitate, and this retardation of recrystallisation 
is believed to be responsible for extending the 
Type IIb ductility trough to higher temperatures. 
While type IIa low ductility is only apparent at 
quite high strain rates; the ductility is good at lower 
strain rates, or when there is an extended hold prior 
to testing.(33-35) In contrary to this, as shown in 
Figure 8(36) type IIb ductility is quite low as strain  



6   
 

SAHOO, G.  et al. 

J.Met.Mater.Miner.26 (1) 2016, DOI:10.14456/jmmm.2016.5 

rate decreases. Type IIa ductility loss is 
dependent on composition, particularly Mn/S ratio 
and also is due to the precipitation of liquid FeS 
particles, and reduction of grain boundary 
decohesion due to S segregation.(33)  

 Figure 7. Schematic representation of temperature zones 
   of reduced hot ductility of steel related to 
                embrittling mechanism.(31) 
 

Figure 8. Regions of low ductility due to (a) precipitation 
   of carbides/nitrides and (b) sulphides(36) 
 

The composition of steel also influences 
transverse cracking. The Nb additions of as low as 
0.01% has been reported to increase sharply 
transverse cracking in continuously cast slab, 
the propensity increases with increasing Al 
content.(32-37-38) Increased N and S also promote 
transverse cracking in Nb containing steels while C 
contents within the range 0.10- 0.17% are 
particularly prone to transverse cracking.(39)  While 
additions of 0.2-0.3% Cu and Ni to the Nb 
containing steel have been also been  reported to 
promote transverse cracking, additions of 0.02-
0.04% Ti is required to reduce transverse cracks. 
 

The last one is region III, which occurs over 
the approximate temperature range 900-600°C, 
depending on composition. If Type II low ductility 
is also present, then both of these two ductility 

troughs can merge together.(31) This region of low 
ductility is associated with the austenite to ferrite 
transformation and the associated fracture mechanism 
can be explained using the schematic shown in 
Figure 9.(40) On cooling below the transformation 
temperature, ferrite formation commences at 
austenite grain boundaries, leading to the formation 
of films of ferrite around the austenite grains. At 
temperatures within the transformation range, 
ferrite is softer, i.e., more ductile and has less 
strength than that of austenite, which is partly due 
to the higher atomic diffusivity of ferrite and to 
larger slip system of bcc (48) compared with fcc 
atomic structure (12).(41) Thus, when deformation 
commences, strain is concentrated at the primary 
ferrite film leading to weakening of grain boundaries, 
and the processes of ductile failure, i.e. void 
nucleation at second phase particles, and the 
growth of these voids, continues within the ferrite 
film.(42-44) Thus on a microscopic scale, fracture can 
be described as ductile, but overall the failure  
is brittle as fracture surfaces are characterised  
by intergranular failures although the facets of  
the individual grains are often associated with  
void formation around second phase particles. The  
high temperature end of the ductility trough is 
associated with the start of transformation, and is 
thus determined by composition and processing 
conditions. There appears to be a good relationship 
between the temperature at ductility starts to  
fall and the Ar3 temperature, the transformation 
temperature measured during cooling. It has  
also been suggested that the temperature at  
which ductility starts to fall is very close to the 
equilibrium transformation temperature Ae3, rather 
than the Ar3, as the deformation process accelerates 
the transformation kinetics.(45) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Mechanism for embrittlement in the low- 
                     temperature or two-phase zone.(40) 

 
Ductility recovers at lower temperatures 

because the volume fraction of ferrite is higher, 
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and the strain distribution between austenite and 
ferrite becomes more uniform. At lower temperatures, 
the strength differential between austenite and 
ferrite is also less, which will again contribute to a 
more uniform distribution of strain between austenite 
and ferrite. For ductility to recover completely, it 
appears that approximately 50% of the austenite 
must have transformed to ferrite. 

 
Hot tearing 
 

The strain to fracture of steel is less than 1% 
just below the solidus temperature i.e., in zone.  
A in Figure 7(b).(25) In this zone, the ductility in  
the interdendritic regions is reduced locally due  
to the microsegregation of S and P residuals at 
solidifying dendrite interfaces which lowers the 
solidus temperature.(25) The ductility remains effectively 
zero until the interdendritic liquids begin to freeze 
and thus called as ‘zero ductility temperature’ 
(ZDT), which lies within 30-70ºC of the solidus 
temperature as shown in Figure 10. This zone is 
responsible for hot tearing of steel. Application of 
any strain to the steel in this temperature region 
will propagate cracks outward from the solidification 
front between dendrites. The appearance of the 
fracture surface of resulted at this temperature zone 
exhibits a smooth, rounded facet, which is characteristic 
of the presence of a liquid film at the time of 
failure.(25) During transition from brittle to ductile 
behaviour, 100% ductility may not occur until 
some lower temperature approaches. As reported 
by Suzuki et. al,.(46) some embrittlement may be 
encountered at temperature as low as 1200ºC and 
the ductility is worsened due to the increased 
content of S, P, Sn, Cu and Si.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Relationship between mechanical properties 
                    in the high temperature zone of reduced ductility 
         and corresponding schematic presentation 
       of solid/liquid interface during casting.(25) 
 

Techniques For Assessing Hot Ductility  
 

Hot ductility is most commonly assessed 
using an elevated temperature tensile test. As such 
there is no standardized test available for assessing 
hot ductility. In view of this, different researchers 
have adopted different procedures for evaluating 
hot ductility. However, typically used thermal 
cycle involves heating the sample to a solution 
temperature in the range 1200-1350°C to produce a 
coarse austenite grain size and dissolve any microalloy 
precipitates like Nb(CN), V(CN), Ti(CN) etc., 
followed by cooling to a test temperature at a rate 
to simulate that experienced at the surface of a 
continually cast product. Typically cooling rate  
is kept 60°C/min although different researchers 
have kept different cooling rates. Results of some 
researchers show that increasing cooling rate to  
test temperature can reduce hot ductility. The strain 
rate of 10-3 to 10-4 s-1 is employed for straining  
to failure to simulate that experienced during  
the straightening of continuously cast slab. In 
micro alloyed steels, hot ductility is reduced on 
reducing strain rates.(43) However, as reported by 
Suzuki et.al,(39) in the region II, the precipitation  
of finely distributed oxy-sulfides at the austenite 
grain boundary weakens the boundary strength, and 
thus over-aging treatments such as slow cooling, 
holding for certain time, or slow rate of straining 
result in good ductility. In contrast to this, the 
embrittlement in the region III is manifested  
by the slower strain rate of test.(57) The solution 
temperature may affect the austenite grain size, and 
it is known that coarser austenite grain sizes will 
reduce hot ductility.(47) 
 

For simulating the continuously cast condition 
more closely, some tests melt the test piece insitu 
prior to testing.(48-50) This is performed especially, 
when evaluating the effects of Ti and S on hot 
ductility as complete dissolution will not be 
achieved by a solid state heat treatment. Instead of 
continuous cooling to a test temperature, some 
researchers have employed more complex thermal 
cycles to simulate more accurately the complex 
temperature patterns experienced at the surface of a 
continuously cast product.(51-52) Banks et al.(53) have 
considered a more accurate simulation of the 
commercial cooling cycle involving both a rapid 
primary cooling followed by slower secondary 
cooling with and without temperature oscillations 
(Figure 11). Cooling cycles employing temperature 
oscillations have been shown to have a marked 
effect on hot ductility in some situations, by 
promoting precipitation of AlN.  
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Figure 11. Schematic of Thermal cycles simulating 
         continuous casting of slabs with and without 
        oscillation. 
 

Some tests have been also carried out in air 
after soaking for reproducing hot shortness effects 
due to copper.(54) Ductility is also assessed visually 
by examining any cracks on the surface with 
oscillation marks, which are known to be crack 
initiation sites for transverse cracks.  

 
Relevance of Hot Ductility Test to Transverse Cracking 
  

Some researchers have reported quantitative 
relationships between measures of hot ductility  
and transverse cracking. Bannenebrg(37) established 
a relationship between the number of transverse 
cracks per slab and the reduction of area in a  
hot tensile test. According to the findings of 
Bannenebrg,(37) no cracked slabs were observed 
above a reduction of area value of 75% while 
Suzuki et. al.,(55) have suggested a value of 60% 
reduction of area to avoid slab cracking. On the other 
hand, based on the finding of Mintz and Yue, (56)  
a reduction of area value of 30-40% is more 
realistic to avoid transverse cracking. Therefore, 
there is considerable discrepancy between the 
suggested values, and it is likely that such a value 
can only be ascribed to specific tensile test 
conditions and slab assessment methods. As well 
as the depth of the ductility trough and the 
temperature at which it occurs are also significant. 
If slab straightening can be carried out outside  
the temperature range of low ductility, then transverse 
cracking may be avoided.  
 
Conclusions 
 

Liquid embrittlement and hot shortness 
effect of Cu in Cu bearing steel has been reviewed.  

  - It involves penetration of liquefied Cu 
enriched phase at the steel/scale interface into 
austenite grain boundaries.  
 - This is accelerated under stress during 
hot rolling or forging at temperature higher than 
that of Cu enriched phase.  
- The control of the microstructure near steel/scale 
interface by alloying the steel with Ni/Si will lead 
to reduce the amount of liquid Cu enriched phase.  
  - The technique employed by researchers 
for evaluating hot shortness effect is mainly hot 
tensile and hot bend test after oxidation.  

- Cu bearing steels also exhibit transverse 
cracking in continuously cast products. 

- Hot tensile test employing with a strain 
rate nearly similar to that of straightening operation 
during continuous casting of thick slabs has been 
also used for evaluating hot ductility behaviour and 
surface cracks of continuously cast products.  
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