Hot corrosion behavior of Mg$_2$SiO$_4$ ceramic exposed to molten Na$_2$SO$_4$ at 900°C to 1100°C

Hamza MILLES1,*, Louafi SNANI1, Amel OULABBAS2, and Khaled TOUALBIA3

1 Department of Metallurgy and Materials Engineering, Badji Mokhtar-Annaba University, P.O.Box 12, Annaba, 23000, Algeria
2 Research Centre in Industrial Technologies (CRTI) P.O.Box 64, Cheraga, 16014 Algiers, Algeria
3 Department of Material Sciences, Abbas Laghrour University, Road of Batna, Khenchela, 40004, Algeria

*Corresponding author e-mail: m.hamza05@yahoo.fr

Received date:	2 July 2023
Revised date	17 January 2024
Accepted date:	6 March 2024

Keywords:
Forsterite;
Thermal barrier;
Hot corrosion;
Molten salt

Abstract
Thermal barriers are used as protective coating for critical components working at high temperature of gas turbines. Forsterite (Mg$_2$SiO$_4$) ceramic is proposed by researchers as a novel thermal barrier coating (TBC), due to its low thermal conductivity and good thermal expansion. Hot corrosion results from the molten salts effect on the TBC’s surface, accumulated during the combustion processes. In this study, Mg$_2$SiO$_4$ samples were exposed to Na$_2$SO$_4$ molten salt at 900°C, 1000°C and 1100°C for 6 h in air. Samples were investigated and compared using scanning electron microscope (SEM) and X-Ray diffractometer (XRD). MgSO$_4$ was the predominant corrosion product observed on the surface of the samples. Na$_2$Mg$_5$Si$_{12}$O$_{30}$ was also observed at 1000°C. Na$_2$SiO$_3$ appeared only on sample treated at 900°C.

1. Introduction

Forsterite is a crystalline magnesium silicate belongs to the olivine group with chemical formula Mg$_2$SiO$_4$. It was systematically investigated for thermal barrier coating (TBC) applications. Mg$_2$SiO$_4$ produced via solid-state reaction has high phase stability up to 1300°C, according to the results. At 1000°C, the thermal conductivity of Mg$_2$SiO$_4$ was 20% lower than that of yttria stabilized zirconia (8YSZ). Mg$_2$SiO$_4$ also presented moderate thermal expansion coefficients, which increased from 8.6×10^{-6}°C$^{-1}$ to 11.3×10^{-6}°C$^{-1}$ (200°C to 1350°C) [1]. Forsterite is an important material in the magnesia–silica system [2]. This ceramic demonstrated a considerable increase in fracture toughness over hydroxyapatite ceramics (KIC = 2.4 MPa m$^{1/2}$), exceeding the minimum limit stated for bone implant. In vitro studies showed significant osteoblast adhesion, spreading, and growth on the surface of forsterite ceramic [3]. Ni et al. [3,4] showed that forsterite is a new bioceramic with excellent mechanical characteristics and good biocompatibility that may be ideal for hard tissue repair. On the hot section components of gas turbines, thermal barrier coatings (TBCs) have been thickly applied in order to shield them from heat, corrosion, and erosion [5,6]. Due to its inherent physical characteristics and compatibility with superalloys, yttria-stabilized zirconia (YSZ), which has a 6 wt% to 8 wt% composition, is currently the most successful TBC material [7,8]. However, due to the hazardous phase transitions of YSZ at this temperature, which are accompanied by a significant volume change of 4% to 6% [9], the long-term application temperature of YSZ is restricted to below 1200°C. TBCs are used more frequently in industrial engines used on land as well as marine engines, they frequently work in extreme conditions or burn fuels of poor quality that contain contaminants like vanadium, sulfur, and sodium. During turbine engine operation, these contaminants can condense on the surface of TBCs at temperatures ranging from 600°C to 1100°C [10,11]. Na$_2$SO$_4$ and NaVO$_3$ are the two primary salts found in the molten salt deposits. High-temperature materials used in combustion systems are severely corroded by molten sulfate-vanadate deposits that form as a result of the condensation of these fuels' combustion products [12]. To improve their applications, it is necessary to investigate the hot corrosion behavior of TBCs in the presence of contaminants found in low-quality fuels. Previous studies have shown that YSZ is susceptible to corrosive attack by molten salts [13,14]. Molten salts could leach away the stabilizer yttria in YSZ during a long-term operation at high temperatures, resulting in the instability of the tetragonal phase and transformation to the monoclinic phase upon cooling [15,16]. There seems to be an urgent need to investigate alternate TBC materials in order to increase hot corrosion resistance and phase stability [17,18]. As interesting TBC, prospects for higher temperature applications materials including pyrochlore-type Ln$_2$Zr$_2$O$_7$ (Ln = La to Gd) [19], perovskite-type SrZrO$_3$ [20], fluoride-type La$_2$CeO$_3$ [13], and magnetoplumbite-type LaMgAl$_2$O$_9$ (Ln = La, Nd, Sm, Gd) [21,22] have also been put forth. Among these, Mg$_2$SiO$_4$ has been demonstrated to have some great properties for the use of TBC, and has been evaluated...
Vanadium in low-quality fuels reacts with oxygen to form a highly corrosive acidic oxide V₂O₅, which might result in hot corrosion of TBCs during high-temperature combustion [1]. To examine Mg₂SiO₄’s suitability as a new TBC material, it is initially required to understand its hot corrosion performance in a corrosive environment. The microstructures and characteristics of Mg₂SiO₄ subjected to molten Na₂SO₄ deposits are, nevertheless, little understood. Sodium sulfate has been confirmed as the main chemical reagent involved in hot corrosion, due to its exceptional stability over a wide range of temperatures and oxygen partial pressures [23-25]. The generation of Na₂SO₄ is mainly the result of oxidation or combustion of impurities containing sulfur and alkali metals in fuels and aerosols present in the air. This work aims to assess the hot corrosion behavior of Mg₂SiO₄ ceramic exposed to molten Na₂SO₄ at various temperatures where TBCs fail more rapidly in hot corrosion.

2. Experimental

In this study, forsterite was obtained using pure magnesium carbonate 4MgCO₃Mg(OH)₂·H₂O (S.G.I.M. S.p.A) and talc Mg₃Si₄O₁₀(OH)₂ (BIOCARE Laboratories) as starting materials. Figure 1 illustrates the experimental procedure flow chart. Magnesium carbonate was annealed at 1000°C for 1 h to obtain MgO. A mixture of MgO and talc at a molar ratio of 5:1 was ball-milled in a planetary ball-mill (FRITSH PULVERISETTE7) under ambient conditions, using six 10 mm stainless steel balls in a stainless-steel jar (80 mL). The ball-to-powder weight was approximately 10:1, and the rotation speed of the main disc was set at 500 rpm during 5 h, and then, an annealing was carried at 1000°C for 1 h in the air [26]. The Forsterite powder was uniaxially compacted in a θ 20 mm die by ambient isostatic pressing at 4500 KPa, and then, the obtained green bodies were calcinated at 1600°C for 3 h. Obtained pellets were subjected to isotherm heat treatment at 900°C, 1000°C and 1100°C for 6 h in an ambient atmosphere, and cooled down to the room temperature in the furnace. Following a cyclic high-temperature corrosion test (four cycles of one hour and one cycle of twelve hours), the mass change values of each sample were measured to determine the kinetics of hot corrosion. The weight change was measured using an electronic balance with a sensitivity of 0.01 mg.

In order to specify the corrosion attack, the phase analysis of Mg₂SiO₄ ceramic were performed after hot corrosion tests, samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD patterns were obtained using Rigaku Ultima IV X-Ray diffractometer using Cu Kα radiation, recorded in the 20 range of 10° to 100° (step size 0.01° and time per step 1 s), and compared to the Joint Committee on Powder Diffraction and Standards (JCPDS). The Reference Intensity Ratio (RIR) was used for quantitative analysis. The material degradation was characterized by observing the samples surfaces and cross sections using scanning electron microscopy (SEM FEI Quanta 250).

3. Results

The morphological shape of the obtained forsterite powder is shown in Figure 2(a). Particles have an irregular flat shape resulting from the ball-milling process. Several micrographs were used to measure particles size, and it was between 3 µm and 35 µm. Figure 3 illustrates XRD pattern of the synthesized powder, which matches well with forsterite standard JCPDS card (No.78-1371). Enstatite (MgSiO₃) is also present with the forsterite phase. The crystallite size of the forsterite is in the range of 33 nm to 166 nm and that one of the enstatite is in the range of 34 nm to 177 nm. Figure 4 shows the sample surface as received and after reaction at different temperatures for 6 h. Visual inspection of the sample surfaces after exposure revealed changes in colour and surface morphology. Opaque droplets were formed, indicating that corrosive reactions had occurred, and a transparent reacting layer formed over the entire surface of the specimens. After the hot corrosion test, XRD diagrams of the corroded surface in Figure 5 show distinct peaks from magnesium sulphate (MgSO₄, JCPDS No. 74-1364) and enstatite (MgSiO₄, JCPDS No. 72-0439).

Figure 1. Experimental procedure flow chart.
The absence of any remaining Na$_2$SO$_4$ characteristic peaks suggests that the whole amount was consumed during hot corrosion. Sodium silicate (Na$_2$SiO$_3$, JCPDS No. 73-2115), another phase produced by hot corrosion, was also seen. Therefore, based on their peak intensities, the mole fractions of MgSO$_4$ and Na$_2$SiO$_3$ were roughly obtained, and the findings are shown in Table 1. Notably, the main phase in the temperature range of the test is invariably Mg$_2$SiO$_4$.
The surface morphology of Na$_2$SO$_4$ coating on Mg$_2$SiO$_4$ samples subjected to heat treatment at 900°C, 1000°C, and 1100°C for a duration of 6 h is presented in Figure 4, respectively. The spontaneous arrangement of corrosion products engenders a novel superimposition on the Mg$_2$SiO$_4$ ceramic surface. Figure 6(a) and Figure 6(b) depicting the surface morphology of the specimens corroded at temperatures of 900°C and 1000°C. The analytical findings obtained from the energy-dispersive X-ray spectroscopy (EDS) are presented in Figure 6(g). The analysis revealed that the resultant corrosion product was a blend of magnesium (Mg), silicon (Si), sodium (Na), sulfur (S), and oxygen (O).

In conjunction with the aforementioned XRD and EDS findings, additional analyses indicate that the chemical composition of the compound was comprised of magnesium silicate (Mg$_2$SiO$_4$), magnesium sulfate (MgSO$_4$), and sodium silicate (Na$_2$SiO$_3$). When the temperature increased to 1000°C, the extent of the attack was found to be highly localised. Furthermore, the reaction products were randomly distributed on the sample's surface (Figure 6(b) and Figure 6(e)).

According to EDS results, the corrosion product has been determined was mainly composed of Mg, Si, O, and Na. The XRD pattern illustrated in Figure 5(b) validates that the corrosion products are as described in Table 1. Upon elevating the temperature to 1100°C, identical reaction products were observed as delineated in Figure 6(c) and Figure 6(f). It has been observed that the aforementioned compounds occur in lesser quantities. The formation of tiny idiomorphic crystals on the surface of the corroded sample at 1100°C could be identified as forsterite.

When the annealing temperature rises from 900°C to 1000°C, the content of MgSO$_4$ phase decreased, with appearance of a new compound (Na$_2$Mg$_5$Si$_{12}$O$_{30}$, JCPDS No. 73-0929). After corroded at 1100°C, in Figure 5 Pattern (c), the sharp peaks ascribed to Mg$_2$SiO$_4$ accounted for 71% of the total crystalline phase of the surface, while the relative content of the sodium magnesium silicate further increased from 8% at 1000°C to 12% at 1100°C. Cross-sectional SEM micro-graphs of the hot-corroded samples in Figure 7 were examined. After degradation by Na$_2$SO$_4$ at 900°C for 6 h, in Figure 7(a), the Mg$_2$SiO$_4$ ceramic degraded only slightly, as the microstructure isn't significantly different from the uncorroded Mg$_2$SiO$_4$ ceramic shown in Figure 2(b). As the corrosion temperature increased to 1000°C (Figure 7(b)) some localised pits were formed. These pits are attributed to localised attack at structural discontinuities such as grain boundaries, pores or cracks. Thus, exposure of Mg$_2$SiO$_4$ to Na$_2$SO$_4$ creates temperature-dependent attack morphologies based on the melting temperature of the reaction layer. At 1100°C, traces of corrosion products appear deep in the sample as shown in Figure 7(c). This indicates that the high porosity of the Mg$_2$SiO$_4$ ceramic is the primary reason of the infiltration's frequent occurrence.

When compared to samples treated at lower temperatures, those treated at 1100°C gained more weight. Figure 8 depicts the corrosion rate and kinetic behaviour. The reaction kinetics of the samples follows a parabolic growth rate. The parabolic rate constant, Kp, is calculated using the following equation:

\[
\left(\frac{\Delta W}{A} \right)^2 = Kp \cdot T
\]

Where:
- \(\left(\frac{\Delta W}{A} \right)^2 \) = Weight gain per unit area (mg cm$^{-2}$),
- Kp = Parabolic rate constant (mg cm$^{-4}$ s$^{-1}$),
- T = Time (s).

Results found are 1.792×10^{-3} mg cm$^{-4}$ s$^{-1}$, 2.503×10^{-3} mg cm$^{-4}$ s$^{-1}$, and 2.903×10^{-3} mg cm$^{-4}$ s$^{-1}$, respectively for the samples treated at 900°C, 1000°C, and 1100°C.

\[\text{Figure 4. Surface of samples before and after hot corrosion tests for 6 h. (a) before, (b) at 900°C; (c) at 1000°C, and (d) at 1100°C.}\]
Figure 5. XRD patterns of samples treated at (a) 900°C, (b) 1000°C, and (c) 1100°C.

Figure 6. Forsterite microstructure after hot corrosion tests in presence of Na$_2$SO$_4$. (a), (b), and (c) Low magnification micrographs of samples heat-treated at 900°C, 1000°C, and 1100°C; (d), (e) and (f) high-magnification of (a), (b) and (c) respectively; (g), (h) and (i) indicate the compound chemical analysis.
MILLES, H., et al.

Figure 7. Cross-sectional SEM micrographs of samples after hot corrosion tests at 900°C, 1000°C, and 1100°C respectively; (a), (b) and (c) Low magnification micrographs, (d), (e) and (f) High magnification micrographs; (g), (h) and (i) indicate the compound chemical analysis.

Figure 8. Mass gain vs. time for samples treated at 900°C, 1000°C, and 1100°C.

4. Discussion

High-temperature corrosion phenomena of forsterite were studied in the presence of molten Na\textsubscript{2}SO\textsubscript{4} salt in the temperature range from 900°C to 1100°C in air. Results revealed that the principal corrosion product is MgSO\textsubscript{4}, which melts at 1185°C (greater than the corrosion temperature) \[27\]. The ceramics were attacked by Na\textsubscript{2}SO\textsubscript{4} according to the following Equations:

At 900°C:

\[
\text{Na}_2\text{SO}_4 \text{(liq)} \rightarrow \text{Na}_2\text{O} \text{(liq)} + \text{SO}_3 \text{(g)} \quad (2)
\]

\[
\text{Mg}_2\text{SiO}_4 \text{(s)} + \text{SO}_3 \text{(g)} \rightarrow \text{MgSO}_4 \text{(s)} + \text{MgSiO}_3 \text{(s)} \quad (3)
\]

\[
\text{Mg}_2\text{SiO}_4 + \text{Na}_2\text{O} + \text{SO}_3 \rightarrow \text{Na}_2\text{SiO}_3 + \text{MgSO}_4 \quad (4)
\]

At 1000°C and more:

\[
5\text{Mg}_2\text{SiO}_4 + \text{Na}_2\text{SiO}_3 + 6\text{SiO}_2 \rightarrow \text{Na}_2\text{Mg}_5\text{Si}_{12}\text{O}_{30} \quad (5)
\]

The molten salt attack breaks the existing chemical bonds, followed by the formation of a new compound with new chemical bonds, which is the more fundamental process behind the molten salt chemical reaction \[28\]. Hou Y \textit{et al.} \[29\] provided an overview of the Mg\textsubscript{2}Si\textsubscript{4} bond categorization. Figure 9 depicts the several chemical bonds that make up Mg\textsubscript{2}Si\textsubscript{4}. Chemical bonds between Si and O have greater bond energies than those between Mg and O, according to Table 2's listing of bond energies. As a result, Si-O bonds in Mg\textsubscript{2}Si\textsubscript{4} crystal are more resistant to being destroyed by the attack of the molten salts \[30\]. Based on phase diagrams and thermodynamics, the formation of MgSO\textsubscript{4} and MgSiO\textsubscript{3} can be consistently detected at all corrosion temperature levels from 900°C to 1100°C. It is generally accepted that hot corrosion at elevated temperatures should obey the Lewis acid-base rule \[28,31\].

The presence of new compounds indicates a reaction between Na\textsubscript{2}SO\textsubscript{4} and the sample material. At 900°C, the corrosion product detected by XRD pattern in Figure 04 is Na\textsubscript{2}Si\textsubscript{3}O\textsubscript{5}, this compound disappeared at 1000°C and formed a new complex Na\textsubscript{2}Mg\textsubscript{5}Si\textsubscript{12}O\textsubscript{30} indicating an oxidation increased with increasing temperature, MgSO\textsubscript{4} was also detected in all samples. The corrosion attack is slightly observed on the surface of the samples in Figure 06, by apparition of some localized pits. And in depth, the attack was observed by the
presence of the corrosion products due to infiltration of the molten salt through pores and grain boundaries or discontinuities, with absence of any significant film growth after hot corrosion tests (Figure 07).

However, it was found that the amount of MgSO₄ on the damaged surface was simultaneously decreasing when the corrosion temperature increased to 1000°C. Moreover, the corrosion product Na₂Mg₅Si₁₂O₃₀ was mainly present on the surface at 1000°C and 1100°C (Table 1), both on the surface and pores of the cross-section, while the MgSiO₃ was detected on the surface.

Forsterite behaviors in the same way as YSZ against the hot corrosion in presence of Na₂SO₄, so, it follows parabolic rate kinetics, which indicates that the corrosion is governed by diffusion growth, with a higher mass gain of forsterite at 900°C. The higher weight gain and corrosion rate are observed, at 1100°C, and the parabolic growth rate indicates that the oxidation process diffusion controlled and governed by outer cation and inner anion migration [33].

P. Vadasz et al. [34] studied the MgO–SiO₂–Na₂O system in the isothermal part of the ternary diagram at 1300°C (Figure 10) and found that Mg₂SiO₄ is stable when mixed with Na₂O. This is supported by the XRD results, all of which show strong diffraction peaks from his Mg₂SiO₄ on the corroded surface of the samples under various corrosion conditions. Since excess molten Na₂SO₄ was used in our study, the presence of the Mg₂SiO₄ phase may indicate a very stable phase with less tendency to react with Na₂SO₄ in the melt.

Combined with the above analysis, the degradation process of Mg₂SiO₄ ceramics in the presence of molten Na₂SO₄ is deduced as follows. When Mg₂SiO₄ coexists with Na₂SO₄ at any corrosion temperature level from 900°C to 1100°C, a liquid phase containing Na, Mg, Si and O is formed, after saturation a new phase such as Na₂Mg₅Si₁₂O₃₀ precipitates. The higher corrosion rate above 1000°C is caused by the melting of the salt and the development of basic and acidic fluxes on the surfaces of the samples [35]. It can be reasonably assumed that the degradation of Mg₂SiO₄ by Na₂SO₄ is mainly caused by thermomechanical damage rather than by thermochemical attack. Therefore, the approach of introducing chemically inert oxides to improve hot corrosion resistance appears to be less effective than expected.

![Figure 9. Crystal structure of forsterite [32].](image)

![Figure 10. Ternary diagram of the SiO₂–Na₂O–MgO system [36].](image)
5. Conclusions

In this study, we investigated the behavior of forsterite in contact with Na2SO4 at high temperatures. The main points drawn are:

1) Forsterite is not immune to alterations caused by molten salts, which is reflected by the formation of products resulting from chemical reactions with Na2SO4.

2) According to the XRD curves, the main compound detected is magnesium sulfate (MgSO4) accompanied by MgSiO3, the latter has a lower melting point than forsterite and these two phases coexist in all the results.

3) At 900°C, in addition to the previous phases, we detected sodium silicates Na2SiO3.

4) At 1000°C and 1100°C, a new compound Na2MgSi2O5 appeared with the disappearance of Na2SiO3.

5) The surface of the samples was slightly altered at 900°C and 1000°C under the effect of the salt, with no degradation in-depth, however, at 1100°C, the attack is accentuated on the surface and goes in-depth by following the defects such as the pores and the cracks.

The best corrosion protection is found in TBCs with advanced ceramics and optimized coatings, according to studies on the hot corrosion behavior of different TBC varieties. Consequently, it is crucial that research endeavors persist in order to enhance our comprehension of the degradation mechanisms and create effective approaches to prevent the degradation of TBCs caused by hot corrosion. Forsterite was studied for thermal barrier coating applications in which TBC is subjected to corrosion at high temperatures in the presence of molten salts such as Na2SiO4 and V2O5. It has shown promising results in thermal cycling and hot corrosion tests [30]. The results revealed that MgSiO3 has good phase stability up to 1300°C, and its thermal conductivity at 1000°C is 20% lower than that of 8YSZ, with moderate thermal expansion. [01] Hence, forsterite has the potential to serve as a new TBC material.

References

[31] S. Li, Z.-G. Liu, and S.-I. Ouyang, “Hot corrosion of (Sm₁₋ₓYₓ)₂Zr₂O₇ (x=0, 0.5, 1.0) ceramics against V₂O₅ molten salt in air at 800°C,” *International Journal of Applied Ceramic Technology*, vol. 9, no. 1, pp. 149-158, 2011.

