A contribution to the exploration of the chemical durability, thermal stability, and structural ability of glasses from the Fe$_2$O$_3$-K$_2$O-MoO$_3$-P$_2$O$_5$ quaternary system

Asmae ER-RAFAI1, Yasmina ALAOUI1, Mohamed LAOURAYED1, Mohamed OUNACER2, Mouloud EL MOUDANE1,*, Mohammed SAJIEDDINE2, and Abdelkbir BELLAOUCHOU1

1 Laboratory of Materials, Nanotechnology, and Environment, Faculty of Science, Mohammed V University in Rabat, P.O. Box. 1014, Agdal-Rabat, Morocco

2 Physic of Materials Laboratory, FST, Sultan Moulay Slimane University, Beni-Mellal, Morocco

*Corresponding author e-mail: m.elmoudane@gmail.com

Received date: 9 July 2023
Revised date: 7 December 2023
Accepted date: 30 December 2023

Keywords: Phosphate glasses; Iron oxide; IR et Raman; Mössbauer spectroscopy; Chemical durability

Abstract

The relationships between the properties and structure of xFe$_2$O$_3$-(40-x)K$_2$O-10MoO$_3$-50P$_2$O$_5$ glasses have been reported in this paper. Homogeneous glasses are formed for different Fe$_2$O$_3$ contents. The density and molar volume evolution of these glasses shows that Fe$_2$O$_3$ acts as a glass former and strengthens the structural bonds of the glass. Experimental 57Fe Mössbauer spectroscopy graphs suggest the existence of divalent Iron (FeII) and trivalent Iron (FeIII). The boost in chemical durability agrees with the growth in glass transition temperature due to more powerful bonding in the structural network. P-O-Fe bonds replace P-O-P bonds when Fe$_2$O$_3$ is present in the phosphate network.

1. Introduction

All materials can undergo environmental degradation; the rate and degree of degradation depend on the details of the material's composition, structure, and environment [1]. Phosphate glass materials represent a great interest in technological fields. They are widely studied in research [2-13]. However, their relatively poor chemical durability limits their use. In alkali metal oxides such as K$_2$O, the three-dimensional networks are converted into linear phosphate chains, resulting in the breakage of the P-O-P bond and the generation of non-bridging oxygens [14]. Transition metal ion-containing glasses, particularly Fe$_2$O$_3$ and MoO$_3$, have attracted considerable interest given their potential use in electrochemical, electronic, and optical devices [15-17]. As such, phosphate glasses containing iron are now being researched for various technical purposes because of their exceptional chemical durability, relatively lower melting temperature, and elevated waste-loading capacity [18-24].

On the other hand, Fe$^{2+}$ and Fe$^{3+}$ assumed to play additional structural functions in phosphate glasses incorporating iron oxide, affect the structure [25]. According to the IR data, iron ions act as network formers and modifiers relying upon the Fe$^{3+}$/Fe$^{2+}$ ratio [19,26]. In addition, the presence of Fe$_2$O$_3$ in the phosphate network causes the P=O to break, and the P-O-P bonds are replaced by P-O-Fe bonds.

Many studies have found that the effect of iron oxide on structural, thermal, and chemical durability relies on the glass material's composition. The influence of Fe$_2$O$_3$ composition on the chemical durability of phosphate glass comprising Zinc, especially on the glass series (40-x)ZnO-xFe$_2$O$_3$-60P$_2$O$_5$ (x=10 mol% to 40 mol%), shows that the durability increases considerably with the rising of Fe$_2$O$_3$ percentage [27]. From the infrared spectra, Moustafa et al. [19] discovered that adding Fe$_2$O$_3$ significantly affects the local order of the glass network of glassy phosphate. Ma et al. [28] demonstrated that substituting sodium for iron results in a broader phosphate anions distribution in glasses due to disproportionation reactions. The consistent shifts in Raman frequencies imply no preferred iron replacement with sodium at a specific phosphate site. EPR data indicate that Fe$^{3+}$ ions are not restricted to the center positions of the glass formers’ tetrahedral and octahedral sites but can also be located at interstitial or peripheral points in the glass matrix [29]. Thus, it is proven that sodium-free iron phosphate glasses’ thermal stability versus crystallization is often higher than sodium-containing iron phosphate glasses [30]. Beloued et al. [31] explained that increased Fe$_2$O$_3$ in the glass composition results in stronger bonds in the glassy system. Incorporating Fe$^{2+}$ and Fe$^{3+}$ strengthens the Fe-O-P covalent bond and increases the rigidity of the glass. The generation of short pyrophosphate chains, as indicated by the IR and XRD spectra, gives significant chemical durability.

In addition, Mössbauer spectroscopy has been used to study a wide range of phenomena in materials science, solid-state physics, and chemistry. It can provide detailed information about the electronic
and magnetic properties of materials, as well as the local atomic environment, lattice dynamics, and phase transitions. It is particularly useful for studying the behavior of certain isotopes, such as iron, which are common in many materials.

Mössbauer spectroscopy can be combined with other experimental techniques, such as X-ray diffraction, Infrared spectroscopy, Raman spectroscopy, and other characterization methods, to obtain a more complete and detailed view of the properties of the materials studied. Motivated by the above consideration, this article aims to explore the Structure-property and chemical durability relationships of a new glass of general composition \(x\text{Fe}_2\text{O}_3-(40-x)\text{K}_2\text{O}-10\text{MoO}_3-50\text{P}_2\text{O}_5\) with \((x=10, 20, 30, 40)\). The anticipated results of our study will yield valuable insights for the examination and implementation of high-level nuclear waste disposal. Specifically, we aim to resolve the issue of diminished chemical durability in phosphate glasses. In addition, the phosphate glasses were studied by X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Fourier transforms infrared (FT-IR), and Raman spectroscopy to examine alterations in the glass structure as a result of the content. In parallel, we examined the iron sites within the glass using \(^{57}\text{Fe}\) Mössbauer spectroscopy. Combining this with an assessment of the glass’s chemical durability, we were able to determine the role of iron in the dissolution process. To test the glass’s chemical durability, three different solutions were used: HCl solution, deionized water, and NaOH solution.

2. Materials and methods

2.1 Glass preparation

A molybdenum phosphate derivatives glass containing various percentages of potassium and iron oxide was carried out. This study used all commercial chemical reagents, \(\text{NH}_4\text{H}_2\text{PO}_4\), \((\text{NH}_4)_6\text{Mo}_7\text{O}_{24}\cdot 4\text{H}_2\text{O}\), \(\text{K}_2\text{CO}_3\), and \(\text{Fe}_2\text{O}_3\), which are of high-purity reagent grade (99%, Sigma-Aldrich) with precise proportions for each composition. Glasses of composition \(x\text{Fe}_2\text{O}_3-(40-x)\text{K}_2\text{O}-10\text{MoO}_3-50\text{P}_2\text{O}_5\) with \((x=10, 20, 30, 40)\) were elaborated via the traditional melt-quenching technique [32,33]. All batches were loaded into an alumina crucible (x=10, 20, 30, 40). The resulting melt was quickly quenched under ambient air conditions, resulting in the production of vitreous samples. The physical forms which the glass system were recorded using an X-ray powder diffractometer. The XRD graphs were created at an ambient temperature using a Siemens D5000 powder diffractometer with a CuKα radiation source (\(\lambda_{\text{CuKα}}=0. 5418 \text{Å}\)) at a scanning speed of 2° per minute in 2θ, from 10° to 60°.

Density measurements were performed at room temperature via the Archimedes method with diethyl phthalate as the immersion fluid. The uncertainty of the density measurements was approximately \(± 0.005 \text{ g/cm}^3\).

Differential scanning calorimetry (DSC-SETARAM) determines the glass transition temperatures at a heating rate of 10°C min\(^{-1}\) in an argon atmosphere with an uncertainty of \(± 5 ^\circ\text{C}\).

The different samples’ FT-IR spectra were measured on Bruker Platinum-ATR apparatus type functioning in transmittance mode at room temperature between 400 cm\(^{-1}\) and 1400 cm\(^{-1}\).

The Raman spectra are carried out on a Renishaw micro-Raman spectrometer RM1000 coupled to a He-Ne laser 19 mW for wave numbers 100 cm\(^{-1}\) to 1100 cm\(^{-1}\) via the 632.8 nm line at room temperature. The coordination environment of polyhedral Iron (FeO\(_n\)) and its valence states in the glassy matrix was analyzed using a Mössbauer spectrometer (Wissel GmbH) standard transmission configuration \(^{57}\text{Fe}\) at room temperature. The hyperfine spectral parameters were calculated using the NORMOS least squares fitting program.

2.3 Chemical durability

The chemical durability of a glass is a measure of its resistance to attack by chemical agents. The physical forms which the glass may take, and the nature and conditions of the chemical attack are many and various. This means that there is no one standard measure of durability and glasses are instead classified relative to one another after subjection to the same experimental conditions. Various methods are used to assess the results of durability experiments. The weight loss measurement is carefully selected.

Because of evaluating the chemical durability of iron oxide doped glasses, durability experiments were performed. Glass samples were first immersed in deionized water, acidic medium HCl, and alkaline solution NaOH at ambient temperature at fixed time intervals, then removed from the solution, rinsed, dried, weighed and returned to the solution. The weight loss (W) of the specimen at different times (t) was used to calculate the dissolution rate (DR) of these glasses:

\[
\text{DR} = \Delta W/A \times t
\]

Where: \(\Delta W\) is the weight loss (g), \(A\) is the surface area \((\text{cm}^2)\), and \(t\) is the immersion time \((\text{min})\).

2.2 Glass characterization

Table 1. Physical parameters: Density \(\rho\) (g/cm\(^3\)), molar volume \(V_M\) (cm\(^3\).mol\(^{-1}\)) and glass transition temperature \(T_g\) (°C) of \(x\text{Fe}_2\text{O}_3-(40-x)\text{K}_2\text{O}-10\text{MoO}_3-50\text{P}_2\text{O}_5\) glasses.

<table>
<thead>
<tr>
<th>(X)</th>
<th>(\text{Fe}_2\text{O}_3)</th>
<th>(\text{K}_2\text{O})</th>
<th>(\text{MoO}_3)</th>
<th>(\text{P}_2\text{O}_5)</th>
<th>(\rho) (g/cm(^3))</th>
<th>(V_M) (cm(^3).mol(^{-1}))</th>
<th>(T_g) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>2.96</td>
<td>41.50</td>
<td>429</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>30</td>
<td>10</td>
<td>50</td>
<td>3.08</td>
<td>44.41</td>
<td>451</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>3.14</td>
<td>47.99</td>
<td>457</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>3.36</td>
<td>48.88</td>
<td>477</td>
</tr>
</tbody>
</table>

J. Met. Mater. Miner. 34(1), 2024
3. Results and discussion

3.1 X-ray diffraction

X-ray diffraction (XRD) spectra of all compositions are presented in Figure 1. In this study, the X-ray diffraction results were presented in their raw data form without further processing or normalization. The unprocessed data allows for a more direct examination of the amorphous nature of all the synthesized glassy compositions. There is a wide scattering ranging between 2θ = 15° to 30°. The uniform absence of sharp diffraction peaks across all samples indicates their homogenous amorphous nature, confirming the successful synthesis of glassy materials.

3.2 Physical properties

Density is a physical parameter sensitive to atoms’ spatial arrangement in the glassy lattice. Various parameters determine it, including the interstitial space’s structure, molecular weight, coordination number, and dimensionality [34].

Figure 2 illustrates both \(\rho \) and \(V_m \) dependence of the composition of Fe\(_2\)O\(_3\) in xFe\(_2\)O\(_3\)-(40-x) K\(_2\)O-10MoO\(_3\)-50P\(_2\)O\(_5\) glasses. Following the results (Figure 2 and Table 1), the increase in molar volume as the density of a material increases can be understood through fundamental principles in materials science. To clarify this relationship, it’s essential to delve into the definitions of density and molar volume, as well as the effects of different chemical components on the glass structure.

Density, defined as mass per unit volume, is expressed mathematically as \(\rho = \frac{M}{V} \), where \(\rho \) is density, \(M \) is molar mass, and \(V \) is molar volume. Conversely, molar volume can be determined using the formula \(V = \frac{M}{\rho} \).

In our study, the measured density increased when K\(_2\)O was substituted with Fe\(_2\)O\(_3\). This is due to the notably higher molar mass of iron compared to potassium (M\(_{K_2O} = 39.0983\) g mol\(^{-1}\) < M\(_{Fe_2O_3} = 55.854\) g mol\(^{-1}\)). As a result, the overall molar mass of the glass composition increased as Fe\(_2\)O\(_3\) content rose, which, in turn, affected the molar volume. In the molar volume formula, both molar mass and density are influenced by the introduction of Fe\(_2\)O\(_3\), providing a coherent explanation for the observed increase in molar volume with rising Fe\(_2\)O\(_3\) concentration.

Furthermore, it’s crucial to consider the potential alterations in the coordination environment of Fe\(^{3+}\) ions within the glass structure compared to K\(^+\) ions. Changes in coordination can significantly impact the arrangement of atoms and interatomic distances, which may contribute to an expansion in volume. This alteration in the coordination environment and its effects on the glass structure should not be overlooked. Thus, the addition of Fe\(_2\)O\(_3\) inside the glassy network, leads to a potential expansion of the present amorphous matrix. Thus, this behavior occurs when Fe\(_2\)O\(_3\) acts as a glass former and strengthens the structural bonds of the glass [35].

3.3 Thermal studies

DSC curves in Figure 3 and the corresponding data in Table 1 vividly illustrate the profound impact of Fe\(_2\)O\(_3\) content on the thermochemical properties of phosphate glass. It’s noteworthy that as the Fe\(_2\)O\(_3\) content increases, the glass transition temperature (\(T_g \)) experiences a substantial rise, as evident in Figure 4. This phenomenon is intrinsically linked to the rigidity of the glass matrix [31], as an increase in \(T_g \) implies a more stable and structurally ordered glass. The correlation between \(T_g \) and the chemical composition of the glass is well-established in the literature, where an increase in oxidation degree or coordination often leads to higher \(T_g \) values. Additionally, variations in ionic radius can influence \(T_g \), with smaller ionic radii contributing to increased \(T_g \). However, an intriguing observation emerges when comparing ‘X=30’ to ‘X=20’ at high temperatures: ‘X=30’ exhibits a distinct behavior, dropping lower than ‘X=20.’ This behavior can be attributed to the significantly higher Fe\(_2\)O\(_3\) content in ‘X=30,’ which may trigger more pronounced endothermic reactions at elevated temperatures, leading to the observed dip in the DSC plot. Furthermore, the different ratios of components in these two systems influence their thermal properties, including heat capacity and heat flow, resulting in distinguishable thermal behavior.
3.4 Infrared, Raman, and Mössbauer Spectroscopy

Figure 5 depicts the IR bands of our glass system over a frequency range of 400 cm\(^{-1}\) to 1400 cm\(^{-1}\). The IR bands were assigned based on prior IR studies on phosphates-based glasses. Practically, all glasses feature eight IR bands at \(\sim 1200\) cm\(^{-1}\), \(\sim 1130\) cm\(^{-1}\), \(\sim 1080\) cm\(^{-1}\), \(\sim 1000\) cm\(^{-1}\), \(\sim 900\) cm\(^{-1}\), \(\sim 850\) cm\(^{-1}\), \(\sim 750\) cm\(^{-1}\), \(\sim 650\) cm\(^{-1}\), \(\sim 540\) cm\(^{-1}\), and \(\sim 500\) cm\(^{-1}\). Bands at \(\sim 1200\) cm\(^{-1}\) and \(\sim 1130\) cm\(^{-1}\) are related to the asymmetric [36] and symmetric [37] stretching vibration of PO\(_2\), respectively. Two bands at \(-1080\) cm\(^{-1}\) and \(-1000\) cm\(^{-1}\) are ascribed to the asymmetric and symmetric stretching vibration of PO\(_3\), respectively [32].

The bands appearing at \(-650\) cm\(^{-1}\), \(-540\) cm\(^{-1}\) and \(-500\) cm\(^{-1}\) correspond to the deformation mode of P=O (PO\(_2^\text{3-}\) groups) [38]. The addition of FeO\(_2\) to the glass composition at \(x = 0\) induces notable spectral changes. With increasing iron oxide concentration, spectral bands experience reduced intensity. A distinct band at around 900 cm\(^{-1}\), associated with asymmetric stretching vibrations of P–O–P linkages, not only diminishes in intensity but also shifts to a higher wavenumber. These shifts signify the disruption of P=O bonds and the formation of P-O-Fe bonds within the glass [39]. The influence of Fe\(^{3+}\) ions, known for their smaller ionic size compared to Fe\(^{2+}\), contributes to a narrowing of P-O-P bond angles and a shift of the vibrational band towards higher frequencies [19]. These spectral transformations offer valuable insights into the structural adjustments triggered by the introduction of FeO\(_2\), emphasizing the intricate relationship between chemical composition and vibrational properties within the glass network.

$\frac{1400}{1200} \quad 1000 \quad 800 \quad 600 \quad 400}$

$\begin{array}{cccccccc}
X & \text{Area} \, \% & \text{I.S.} \, \text{mm-s}^{-1} & \text{Q.S.} \, \text{mm-s}^{-1} & \text{Area} \, \% & \text{I.S.} \, \text{mm-s}^{-1} & \text{Q.S.} \, \text{mm-s}^{-1} & \chi^2 \\
10 & 99.4 & 0.40 & 0.41 & 0.6 & 1.04 & 1.76 & 0.89 \\
20 & 97.3 & 0.37 & 0.44 & 2.7 & 1.17 & 1.45 & 1.08 \\
30 & 96.2 & 0.34 & 0.45 & 3.8 & 1.14 & 1.10 & 1.02 \\
\end{array}$

Figure 5. Infrared absorption spectra \(x\)Fe\(_2\)O\(_3\)-(40-x)K\(_2\)O-10MoO\(_3\)-50P\(_2\)O\(_5\) glasses.
In consistency with Raman spectroscopy, this technique enables the structural characterization of materials by emphasizing the vibrational modes of molecules, serving as a complementary approach to infrared spectroscopy.

The Raman spectra of xFe2O3-(40-x) K2O-10MoO3-50P2O5 glasses were plotted in Figure 6 in a Raman shift range from 100 cm\(^{-1}\) to 1100 cm\(^{-1}\). We have assigned the bands according to the literature. All our glass spectra present the same bands characteristic of groups of phosphate with a decrease in their intensity when adding Fe2O3. Two bands around -1060 cm\(^{-1}\) and -980 cm\(^{-1}\) are associated with the asymmetric and symmetric stretching of PO\(_3\), respectively, suggesting the presence of isolated Q\(^0\) groups [26,28]. The band at -900 cm\(^{-1}\) has been linked to asymmetric stretching vibration P-O-P of non-bridging oxygen in PO\(_4\) tetrahedrons in Q\(^1\) groups [28,37]. Both bands at -830 and -715 cm\(^{-1}\) correspond to the symmetric P-O-P stretching mode ascribed with the bridging oxygen that links two Q\(^1\)-tetrahedra or links Q\(^0\) and Q\(^3\) tetrahedra [20,23,26,28,37]. Bands at -640 cm\(^{-1}\) and -570 cm\(^{-1}\) are characteristics of the O-P-O asymmetric bond bending [26,28]. Meanwhile, at -470 cm\(^{-1}\) a band directed to the O-P-O symmetric bond bending [28,37] is detected. The three bands at -380,-350 and -295 cm\(^{-1}\) are attributed to the symmetric P-O-P stretching mode ascribed with the bridging oxygen that links two Q\(^1\)-tetrahedra or links Q\(^1\) and Q\(^2\) tetrahedra [20,23,26,28,37]. Bands at -640 cm\(^{-1}\) and -570 cm\(^{-1}\) are characteristics of the O-P-O asymmetric bond bending [26,28]. Meanwhile, at -470 cm\(^{-1}\) a band directed to the O-P-O symmetric bond bending [28,37] is detected. The three bands at -380,-350 and -295 cm\(^{-1}\) are attributed to the symmetric P-O-P stretching mode [28,37]. All our glass spectra present the same bands characteristic of groups of phosphate with a decrease in their intensity when adding Fe2O3.

Experimental \(^{57}\)Fe Mössbauer spectroscopy graphs of xFe2O3-(40-x) K2O-10MoO3-50P2O5 glasses are shown in Figure 7, and the calculated hyperfine parameters (relative area, isomer shift "I.S.", quadrupole splitting "Q.S.", fitting uncertainties "\(\chi^2\)") from the fitting of these spectra are summarized in Table 2. To avoid the addition of Fe2O3 in these glasses, the study was limited to iron-rich compositions (x = 10, 20, 30). These three spectra are identical and characteristic of a paramagnetic material. At first sight, we can describe these spectra with a paramagnetic doublet consisting of two very broad lines suggesting the existence of divalent Iron (Fe\(^{2+}\)) and trivalent Iron (Fe\(^{3+}\)) within the three glasses.

Even if, in the starting products, the Iron is in the form of Fe2O3, the elaborated glasses contain Fe\(^{2+}\) ions whose percentages pass from 0.6% for x = 10 to 3.8 % for x = 20. The origin of these ferrous ions is attributed, on the one hand, to the reduction of ferric ions by NH3 coming from the decomposition of NH4H2PO4 and, on the other hand, to the redox equilibrium of Iron in the glass according to the following reaction:

\[
2\text{Fe}^{3+} + \text{O}_2^- \leftrightarrow 2\text{Fe}^{2+} + \frac{1}{2}\text{O}_2
\]

(2)

Generally, according to the literature, Fe2O3-prepared phosphate melts will mainly decrease to Fe\(^{2+}\) [30].

Ferric (Fe\(^{3+}\)) sites have a much lower I.S. value than ferrous (Fe\(^{2+}\)) sites due to the additional protection of the s-electrons from the nucleus by the extra 3d electron. Fe\(^{2+}\) has higher Q.S. values than Fe\(^{3+}\) due to its asymmetric 3d\(^6\) outer shell [43]. Such an increase of \(\chi^2\) is related to reducing Fe\(^{3+}\) to Fe\(^{2+}\).
3.5 Dissolution rate (D_{R})

The dissolution rate is generally determined by the chemical composition, binding strength, bond length, and the number of atoms coordinated in the glassy network [44]. It is important to note that despite the hygroscopic nature of pure phosphate glasses, research has shown that adding transition metal oxides (TMOs), namely Fe_{2}O_{3}, to the glass matrix enhances the glass's chemical durability.

As shown in Figure 8, a lower DR value in xFe_{2}O_{3}-(40-x)K_{2}O-10MoO_{3}-50P_{2}O_{5} glasses pertains to the high Fe_{2}O_{3} concentration, indicating its higher chemical durability. Similar behavior is present for all three mediums. With adding Fe_{2}O_{3}, the DR value has decreased significantly. This suggests that the chemical durability increases with increasing Fe_{2}O_{3} concentration, which correlates perfectly with the increase in the glass transition temperature (Figure 4).

The structural source of this gain is the generation of water-resistant Fe-O-P bonds that substitute hydrolyzable P-O-P bonds [45,46]. It should be noted that the chemical durability of the glass will boost with the ionic field strength of cation formers, the P-O-P bond hydrolysis phase, and the quality of metal-oxygen bindings will determine the general solubility [46]. This increases the glass density (\(\rho\)) while making the glass structure more compact and improving the aqueous durability as well as the chemical stability of the glasses, as verified by DSC, FTIR, and Raman analysis and justified by Mössbauer spectroscopy.

On the other hand, the comparison of the dissolution rate of 30Fe_{2}O_{3}-10K_{2}O-10MoO_{3}-50P_{2}O_{5} glasses in the different media shows an increase from acidic media HCl to alkaline media NaOH through deionized water. The ion exchange process among protons in the solution and the modifying network components could explain the difference in dissolution rate between the three mediums [44].

4. Conclusion

New phosphate glasses containing iron oxide Fe_{2}O_{3} have been synthesized and characterized by X-ray diffraction, DSC, IR, Raman, and Mössbauer spectroscopy. This change in \(T_g\) is consistent with the structural modification of the glass proven by IR and Raman spectroscopy. They demonstrate that increasing the Fe_{2}O_{3} content from 0 to 30 mol% promotes depolymerization of the glassy matrix through the creation of dominant short pyrophosphate chains. Once the Fe_{2}O_{3} level hits 30 mol%, this depolymerization becomes more obvious. Its influence on the glassy structure increases, enhancing chemical interconnection by creating Fe-O-P covalent bonds at the expense of readily hydrated P-O-P and K-O-P bonds. Because of the larger ratios of Fe-O-P bonds in the phosphate network, the amorphous material is greatly resistant to chemical attack. From the Mössbauer spectroscopy results, it can be concluded that the increase in Fe_{2}O_{3} content favors a reduction of Fe^{3+} to Fe^{2+} during air melting. Both Fe^{3+} and Fe^{2+} increase the Fe-O-P covalent bond. The generation of short pyrophosphate chains is promoted by incrementing Fe-O-P covalent bonds, strengthening the structure's bonding. We hope that the results of our research will provide theoretical support for the development of phosphate glasses as nuclear waste hosts.

Figure 8. Dissolution rate evolution of xFe_{2}O_{3}-(40-x)K_{2}O-10MoO_{3}-50P_{2}O_{5} glasses as a function of Fe_{2}O_{3} content in acidic media HCl (a), deionized water (b), and alkaline media NaOH (c).
Acknowledgements

We are extremely thankful to the members of the Materials, Nanotechnologies and Environment Laboratory of the Faculty of Science- Mohammed University in Rabat and the Materials Physics Laboratory of FST-Sultan Moulay Slimane University, Beni-Mellal, for this fruitful collaboration.

Reference

