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Abstract 
The photocatalytic activity (PA) by electrochromic (EC) enhancement of single and multilayer films 

of TiO2, WO3, TiO2/WO3, and WO3/TiO2 was investigated. All films were deposited from metal on 
an ITO glass substrate using direct current (DC) magnetron sputtering via an oblique angle deposition 
(OAD) technique at 85°. Subsequently, a thermal oxidation (TO) process at 500℃ was applied for the 
samples to form metal oxide films. The morphology, elemental composition, crystal structure, and 
optical properties were studied by using field emission scanning electron microscopy (FE-SEM), 
energy-dispersive X-ray spectroscopy (EDS), X-ray diffractometry (XRD), and UV-vis spectroscopy, 
respectively. The photocatalytic properties were investigated by showing the degradation rate of 
methylene blue (MB) solution as an organic pollutant that was examined under ultraviolet irradiation 
of 300 µW∙cm‒2. The film samples were investigated by comparing the pre-color and colored states 
that were achieved through the EC process. The EC properties of WO3 led to increased charge insertion 
on the film surface. This observation was further supported by cyclic voltammetry (CV) testing, which 
revealed a higher current density for the thin film samples. The photodegradation results showed that 
the samples in the colored state exhibited a significantly higher degradation rate of MB compared to 
the pre-color state. 

1. Introduction

In the past few years, titanium dioxide (TiO2) nanostructures have
gained popularity in a variety of applications, including sensors, self-
cleaning, and the degradation of organic pollutants [1]. TiO2 is widely 
recognized as an effective photocatalyst, especially at UV and NIR 
range. It was chosen as the preferred catalyst for photodegradation 
applications over other metal oxides. However, the photocatalytic 
efficiency of TiO2 is limited by its band gap (Eg) of approximately 
3.0 eV to 3.2 eV, but there are several ways to enhance this efficiency, 
including reducing e‒-hole recombination [2], increasing e‒-hole pair 
generation, and increasing charge separation and surface area [3]. The 
most common method for improving performance is to combine TiO2 
with other metal nanoparticles and coat them on top of TiO2 [4,5]. 
However, this may reduce the active surface area between TiO2 and 
the liquid pollutants, resulting in a decrease in catalyst efficiency. 
To address this problem, modifying TiO2 with tungsten trioxide (WO3) 
improves the charge separation efficiency, as WO3 has a band gap of 
approximately 2.8 eV and a similar conduction band level to TiO2 [6]. 
The primary function of WO3 is to give and receive charges from the 
TiO2 band and maintain them in an excited state for a certain period 
to reduce the recombination rate, also known as a heterojunction [7-9]. 
Furthermore, WO3 is used in a variety of technological applications 

including EC devices and smart windows [10-12]. The electrochemical 
coloration is combined with intercalation of lighter ions such as H+, 
Li+, Na+, and K+ [13,14], which can increase the charge density on 
the film surface [15,16] and is related to the oxidation-reduction rate 
of degrading organic pollutants.  

In this study, the two materials, Ti and W, were deposited on an 
indium-doped tin oxide (ITO) substrate with a nanorod structure to 
allow the multiple layers to synergistically increase the surface area, 
using the DC magnetron sputtering technique combined with OAD 
to increase the surface area of the films beyond that which dense film 
can achieve [17,18]. During the deposition process, the particles form 
an aligned nanorod array on the surface, which causes the shadowing 
effect. In addition, the deposition rate has a direct impact on film 
nucleation and growth. A higher deposition rate would cause adatoms 
on the surface to form an ordered alignment [19]. In this study, we 
intend to form the Ti thin film layer at a high deposition rate to achieve 
higher crystallinity with fewer defects, which is beneficial for minimizing 
the recombination of photogenerated e- and holes [20]. Furthermore, 
we aim to achieve a W thin film layer at a low deposition rate to create 
a porous structure, which improves EC performance by allowing e‒

and cations to pass through more easily [21-26]. Furthermore, the TO 
technique was used to create metal oxide films of TiO2 and WO3 on 
an ITO glass substrate. External heat is used to create reactions inside 
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an open pipe, such as Ti4+ + 2O2‒ → TiO2 and W6+ + 3O2‒ → WO3. 
We demonstrated and compared the photocatalytic performance of  
1-layer and 2-layer samples in their pre-colored and colored states by 
monitoring the degradation rate of MB solution under UV irradiance. 
The colored state, achieved through the EC process, involves the 
injection of e‒ and cations into the film's structure (see Figure 1) [27]. 
This results in a high carrier density on the film's surfaces, thereby 
improving the PA performance, as shown in Figure 2.  
 
2.  Materials and methods 
 
2.1  Preparation of thin films 
 

The 100 nm thick ITO films coated on glass (1 cm2 × 1.5 cm2) 
were used as a transparent conducting oxide substrate. The ITO glass 
substrates were cleaned under an ultrasonic process with acetone, 
methanol, and DI water, each for 15 min, respectively. After that, 1-layer 
films with 100 nm thick metallic Ti and W layers were deposited on 
the ITO glass substrate using DC magnetron sputtering and OAD at 
85°, as shown in Figure 3(a). The 2-inch Ti disc (99.995% purity) and 
W disc (99.95% purity) (Kurt J. Lesker Company) were used as the 
targets. Argon (99.999% purity) at a flow rate of 15 sccm was used as 
the sputtering gas in a high vacuum chamber system. The system had 
a base pressure of 5.0 × 10‒5 mbar, maintained by a rotary pump coupled 
with a diffusion pump, and an operating pressure of 2.5 × 10‒2 mbar for 
all deposited films. Moreover, 2-layer films (ITO/Ti/W and ITO/W/Ti) 
were deposited with a total thickness of 100 nm, each layer being 
50 nm thick. Finally, all films were oxidized by the TO in air at 500℃ 
for 1 h within a furnace, as shown in Figure 3(b). These samples are 
summarized in Table 1. Photographs of the as-deposited Ti, W, Ti/W, 
and W/Ti films, and after the TO process at 500℃ for 1 h, are shown 
in Figure 4. 
 
2.2  Characterization of thin films 
 

The top and cross-sectional views before and after the TO were 
observed by FE-SEM (Tescan Mira3, Czech Republic). Elemental 
composition was analyzed by EDS. Crystal structures were determined 
by XRD (D2 PHASER, Bruker) with Cu Kα radiation at 1.54 Å, scanning 
from 20° to 80° with a time per step of 0.2 s and increments of 0.02°. 
Transmittance (T%) in the range of 200 nm to 1000 nm was measured 
by UV-Vis spectrophotometer (Genesys S10, Thermo Scientific). 
Furthermore, the colored films were achieved through EC by applying 
a 2.0 V DC supply, connecting the films as the cathode, Pb as the anode, 
and immersing them in 0.1 M H2SO4 for 1 min.  

After that, the PA performance of the films in the pre-color and 
colored states was tested by monitoring the relative absorbance of MB 

at 664 nm with a base concentration of 0.05 mM under UV irradiance 
(300 µW∙cm‒2, Silver light 10W/T8/BL Blacklight). Finally, the current 
density was measured by CV testing (Wuhan Corrtest Instruments 
Corp., Ltd.). A 3-electrode setup was used, with films serving as working 
electrodes, Ag/AgCl as reference electrodes, and Pt as counter electrodes. 
DC voltage ±2.0 V was applied at a constant scanning rate of 100 mV·s‒1 
in the H2SO4. Figure 5 illustrates the schematic setup for CV and PA 
testing. 

 

 

Figure 1. Schematic of EC process. 
 

 

Figure 2. Mechanism of (a) carrier presence on the film surface in the colored 
state during irradiance light and (b) the PA of ITO/Ti/W films. 

 

 

Figure 3. Schematic of experimental for (a) sputtering process with OAD, and 
(b) TO at 500℃ for 1 h.

Table 1. Summary of preparation of ITO/Ti, ITO/W, ITO/Ti/W, and ITO/W/Ti films. 
 
Samples Sputtering power (Watts)  Total thickness (nm) TO temperature and timen (℃, h) 
 Ti W    
ITO/Ti (TO) 100 -  100 500, 1 
ITO/W (TO) - 20  100 500, 1 
ITO/Ti/W (TO) 100 20  50+50 500, 1 
ITO/W/Ti (TO) 100 20  50+50 500, 1 
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Figure 4. Photograph of (a) as-deposited metal Ti, W, Ti/W, and W/Ti films, 
and (b) after TO at 500°C for 1 h. 

 

 

Figure 5. Experimental setup for (a) CV and (b) PA testing. 

3.  Results and discussion  
 
3.1  Morphology and elemental composition 

 
The top and cross-sectional views of the as-deposited and TO of 

ITO/Ti, ITO/W, ITO/Ti/W, and ITO/W/Ti are shown in Figure 6. 
The OAD techniques produce a nanorod structure according to the 
shadowing effect and the limitations of atom diffusion [28]. The 
realignment of nanorod alloys responds to the deposition rates 
(0.273 nm·s‒1 and 0.115 nm·s‒1 for Ti and W, respectively), with the 
higher deposition rate resulting in ITO/Ti showing orderly alloys. 
Conversely, ITO/W forms a porous structure, as observed in previous 
research [29], and the TO process results in the formation of oxides 
covering the surface. 

The elemental compositions of as-deposited and after TO, 
represented by the weight percentages (wt%) from the EDS spectra, 
are shown in Figure 7 and Table 2 and Table 3. The Ti and W layers 
show a slightly different wt% of O due to the higher mass density of 
W atoms compared to Ti atoms, resulting in the EDS spectra being 
more likely to detect the presence of W atoms. In the 2-layer system, 
the wt% of Ti and W decreased by 50% due to the reduced thickness 
of the Ti and W layers. After TO, the wt% of O increased because 
the O atoms bonded with Ti and W atoms to form oxide components 
as described by the reactions: Ti4+ + 2O2‒ → TiO2 and W6+ + 3O2‒ 
→ WO3.   

In terms of elemental ratio, the 2-layer samples showed a slight 
difference in the Ti/W ratio. This can be attributed to the quantity of 
metal oxides in the samples. The porous surface of ITO/Ti/W allows 
O atoms to penetrate the film easily, leading to the strong formation 
of metal oxides, which is reflected in the reduced Ti and W wt%. 
On the other hand, the ITO/W/Ti sample has a more compact surface, 
resulting in a similar O wt% compared to ITO/Ti/W but higher Ti 
and W wt% [30]. Additionally, the other observed peaks correspond 
to components in the ITO glass (Si, In, Sn, Na, etc.). 

 

Figure 6. Top and cross-sectional views of FE-SEM images of as-deposited (a) Ti, (b) W, (c) Ti/W, and (d) W/Ti and after TO at 500℃ for 1 h, (e) Ti, (f) 
W, (g) Ti/W, and (h) W/Ti. 
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Figure 7. EDS spectra of (a) ITO/Ti, (b) ITO/W, (c) ITO/Ti/W, (d) ITO/W/Ti as-deposited (above) and after TO at 500℃ for 1 h (below). 
 
Table 2. Elemental composition of film samples as-deposited and after TO at 500℃ for 1 h. 
 
Samples Elemental composition (wt%) 

Ti  O  W 
As-deposited TO  As-deposited TO  As-deposited TO 

ITO/Ti 7.63 6.34  23.77 30.46  - - 
ITO/W - -  12.99 24.62  28.86 25.24 
ITO/Ti/W 4.02 3.21  19.02 26.31  14.67 11.94 
ITO/W/Ti 3.82 3.22  19.40 26.40  15.54 13.05 
 
Table 3. Elemental ratio of film samples as-deposited and after TO at 500℃ for 1 h. 
 
Samples Elemental ratio 

Ti/O  W/O  Ti/W 
As-deposited TO  As-deposited TO  As-deposited TO 

ITO/Ti 0.32 0.21  - -  - - 
ITO/W - -  2.22 1.03  - - 
ITO/Ti/W 0.21 0.12  0.77 0.45  0.27 0.27 
ITO/W/Ti 0.20 0.12  0.80 0.49  0.25 0.25 

3.2  Crystal structure 
 
The crystal structures after TO at 500°C for 1 h were characterized 

by XRD, as shown in Figure 8. The small reflection at 2θ of 25.52° 
corresponded to the Miller indices (hkl) at the (101) plane of the TiO2 
anatase phase (JCPDS PDF no. 21-1272). The strong signals correspond 
to the primary reflections of WO3 at 23.28°, 24.41°, 28.79°, 33.41°, 
39.58°, and 41.67° corresponding to (002), (200), (112), (202), (210), and 
(222), respectively, with crystal orientations of the WO3 orthorhombic 
phase (JCPDS PDF no. 83-0951).  

In the case of the 2-layer samples (ITO/Ti/W and ITO/W/Ti) after 
TO, the anatase and orthorhombic phases were observed, similar to 
the 1-layer samples. This confirms that the crystal orientations did not 
change in the 2-layer system, regardless of whether the Ti or W layer 
was on top. However, the 2-layer samples showed evidence of lower 
peak intensity compared to the 1-layer samples because the ratio of 
the layers had decreased. 
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Figure 8. XRD patterns of the Ti and W sputtered with OAD 85° and after TO 
at 500°C for 1 h. 
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3.3  Optical properties 
 

The optical transmittance spectra (T%) of the 1-layer and 2-layer 
film samples in the wavelength range of 200 nm to 1100 nm are shown 
in Figure 9 and used to determine the Eg values by Tauc’s relation, 
as shown in Equation (1), where α is the absorption coefficient, hν 
is the incident photon energy, and Eg is the optical band gap energy. 

 
 αhv = (hν – Eg)n  (1) 

 
where n = 2 for indirect transition of the Eg and intercepts of the tangent 
drawn at the absorption function to the energy axis at zero absorption 
are evaluated to get the Eg values. 

After the TO, the film samples exhibited high transparency, and 
the Eg values were found to be 3.64, 3.67, 3.76, and 3.78 eV for ITO/Ti 
(TO), ITO/Ti/W (TO), ITO/W (TO), and ITO/W/Ti (TO), respectively. 
The results of the Eg values provide evidence of charge transfer between 
the Ti and W layers, especially in the W layer, where there is a change 
to the WO3 orthorhombic phase. This phase change results in a reduced 
band alignment strategy in the 2-layer system [31,32]. 

 
3.4  Photocatalytic performance 

 
In this study, the 1-layer and 2-layer films are divided into two 

states: i) pre-color state and ii) colored state. The colored state is 
achieved by applying a 2.0 V DC, connecting film as the cathode, and 
Pb as the anode, before immersion in H2SO4 as the electrolyte for 
1 min, followed by the EC process.  

The PA performance was evaluated through 4 iterations of tests by 
monitoring the degradation of 0.05 mM MB as an organic pollutant. 
The relative absorbance at 664 nm was measured and plotted against 
time to investigate the degradation over a total of 250 min. For the first 
50 min, we observed the adsorption-desorption on the surface by 
sealing the samples in the dark. The remaining 200 min were conducted 
under UV irradiation at an intensity of 300 µW∙cm‒2 with recordings 
taken every 50 min. The chemical kinetics can be used to describe 
the behavior of the MB degradation rate, which follows a first-order 
reaction as described in Equation (2) [33]. 

 

Ln � C
C0
� = kt                     (2) 

 
 

where C is the MB concentration, C0 is the initial MB concentration 
(0.05 mM), k is the first-order rate constant, and t is time. 
 
3.4.1  PA in the pre-color state 

 
The first step of observation takes place in the pre-color state. 

The results are presented in Figure 10 and Figure 11. The first 50 min 
in darkness revealed absorption and fast activity by the catalyst surface. 
After the UV irradiation, the MB concentration clearly decreased 
due to the redox reaction. For the 1-layer samples, ITO/Ti (TO) showed 
a high photodegradation performance, benefiting from the catalytic 
properties of Ti compared to ITO/W (TO). 

For the 2-layer films, the position of the layers significantly affected 
their PA performance. In the case of ITO/Ti/W (TO), the photodegradation 
performance was comparable to ITO/Ti (TO), despite the reduced 
thickness of the Ti layer. This indicates that the Ti layer plays the role 
of catalyst, and the W layer contributes to initial absorption [34,35], 
aiding the generation of e‒-hole pairs and reducing the recombination 
rate due to e‒ acceptance efficiency [36-39]. However, ITO/W/Ti (TO) 
did not perform effectively in photodegradation, showing a slower 
degradation rate because the ITO and Ti layers acted as barriers, 
obstructing the redox reaction by trapping e‒ in the W layer [40], as 
shown in Figure 12. 

Regarding durability, after cycling tests, ITO/Ti (TO) showed 
a decrease in performance, trending towards the performance of ITO/ 
Ti/W (TO) after 4 tests of photodegradation under UV irradiation. 
Nonetheless, both ITO/Ti (TO) and ITO/Ti/W (TO) showed strong 
degradation performance and were chosen for photodegradation testing 
in the colored state. 

 
3.4.2  PA in the colored state 

 
After the first observation step, the 1-layer and 2-layer ITO/Ti 

and ITO/Ti/W samples were chosen based on their PA performance in 
the pre-color state. The next step of PA testing was conducted in the 
colored state by applying 2 V DC to the film, with the film as the 
cathode and Pb as the anode, and immersing it in H2SO4 for 1 min. 
The testing conditions were the same as in the pre-color state. 
Additionally, we studied the mechanism and stability of the film in 
the colored state during PA testing by measuring T% and calculating 
Eg before and after the EC process. We also collected T% at each step 
and observed photodegradation during the 1st test. 
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     Figure 9. (a) T% and (b) Eg values from Tauc’s plot of the film sample as-deposited and after TO at 500°C for 1 h. 
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Figure 10. (a-d) Degradation of MB by measuring relative absorbance at 664 nm versus testing time and (e-h) the first-order rate constants for TO samples 
from 4 tests. 

 

                                    

Figure 11. Comparison of the degradation % of thin films after TO at 500°C for 1 h based on data from 4 tests. 
 

                                       

Figure 12. Effects of e‒ transfer from layer arrangement of (a) ITO/W/Ti (TO), and (b) ITO/Ti/W (TO). 
 
The results of T% and Eg of the films in both the pre-color and 

colored states are represented by dashed and solid lines, respectively, 
as shown in Figure 13. In the colored state, C-ITO/Ti (TO) exhibits only 
slight changes compared to C-ITO/Ti/W (TO), which shows significant 
absorption in the green spectrum and appears as a deep blue color. This is 
because the W layer, being a strong EC material, facilitates the quantity 

of ions and e- into the structure, thereby enhancing the change in optical 
properties [41]. 

In terms of Eg, we found that for C-ITO/Ti/W (TO), right after 
the EC process, the Eg slightly increased to 3.71 eV and then decreased 
back to 3.77 eV as the film started bleaching after immersion in MB 
in a dark location for 25 min, and it was completely bleached after 
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100 min. In contrast, the C-ITO/Ti (TO) did not show a significant 
change in Eg and remained at 3.60 eV for 250 min. This behavior 
may be explained by the charge quantity and coloration efficiency 
in the EC effect. 

The PA performance was observed using the same method as in 
the pre-color state, as shown in Figure 14 and summarized in Figure 15. 
After the EC process, the degradation of C-ITO/Ti/W (TO) increased 
from 12.78% to 15.46%, and C-ITO/Ti (TO) from 21.69% to 22.37%. 
This clearly demonstrates the effect of EC properties on increasing 
degradation efficiency, providing the evidence that the colored state 

does affect PA performance. The EC effect allows charge insertion and 
storage/trapping in the film’s structure by forming specific compounds 
(HxWOx and HxTiOx), which induce absorption in specific spectra. 
We investigated the surface charge by monitoring the current density 
during the EC process using CV testing, as shown in Figure 16. The 
results show that C-ITO/Ti/W (TO) has a charge density of ‒0.0139 
A∙cm‒2, higher than C-ITO/Ti (TO) at ‒0.0112 A∙cm‒2. This indicates 
that the films with more color formation had a greater number of 
carriers on the surface, leading to an increased oxidation-reduction rate 
of MB degradation [42-44]. 
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             Figure 13. T% and before and after colored state and Tauc’s plot relation of (a,b) ITO/Ti  (c,d) and ITO/Ti/W during PA 1st test. 
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Figure 14. (a-d) Degradation of MB by measuring relative absorbance at 664 nm versus testing time and (e-h) the first-order rate constants for pre-color 
and colored states from 4 tests. 
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Figure 15. Comparison of the degradation % of pre-color and colored states for 1 h based on data from 4 tests. 
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Figure 16. Cyclic voltammetry for the 1st cycle of C-ITO/Ti (TO) and C-ITO/Ti/W 
(TO). 

Additionally, there are some interesting parts in C-ITO/Ti/W (TO) 
samples. Unfortunately, under our testing conditions, the colored state 
began to bleach after immersion in MB for 25 min, even without UV 
irradiation. We propose that if the colored state can be maintained 
long enough to be active in the UV region, the film may increase 
degradation by allowing activation in the visible spectrum. 

4. Conclusions 

The 1-layer and 2-layer Ti and W films were deposited using DC 

magnetron sputtering combined with an OAD technique, and the TO 
process was applied to form metal oxide films at 500℃ for 1 h. The 
Ti layer exhibited an ordered tilted nanorod and the W layer exhibited 
a dense and porous surface due to the limitations of atom diffusion. 
XRD analysis revealed the crystalline structure of the anatase phase of 
TiO2 and the orthorhombic phase of WO3. The first step of observation 
of PA performance revealed that ITO/Ti (TO) and ITO/Ti/W (TO) 
exhibited higher degradation rates compared to ITO/W (TO) and ITO/ 
W/Ti (TO), according to the charge transfer in band alignments of 
the heterojunction.  

The ITO/Ti (TO) and ITO/Ti/W (TO) were chosen to test the PA 
performance in the colored state based on their degradation %, and 
the colored state achieved though the EC process revealed that C-ITO/ 
Ti/W (TO) has higher coloration efficiency compared to C-ITO/Ti 
(TO) because the W layer plays a significant role as EC material which 

facilitates the charge into the structure confirmed by the current density 
in CV testing (‒0.0139 and ‒0.0112 A∙cm‒2 for C-ITO/Ti/W (TO) and 
C-ITO/Ti (TO), respectively).

In terms of MB degradation under UV irradiance, both ITO/Ti
and ITO/Ti/W in the colored state show higher degradation rates than 
in the pre-color state, and the degradation rate was enhanced by the 
double injection of e- and ions by the EC effect. 
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