Realizing fast plating/stripping of high-performance Zn metal anode with a low Zn loading

1. Experimental Section

1.1 The preparation of graphene oxide (GO)

Commercial Zn foil (100 um, Zhengying Co., Ltd, China), Copper mesh (500 mesh, Zhengying Co., Ltd, China), ZnSO4·7H2O (99%, Macklin), Na₂SO₄ (99%, Macklin), KMnO₄ (99%, Macklin), carbon black (99%, Macklin), HCl (36 wt%), deionized water, and 1000 mesh sandpaper. The preparation of graphene oxide was based on the Hummers method [1].

1.2 The preparation of Zn coating copper mesh (CZ) and flat Zn plating copper foil (FCZ)

The electroplating solution of Zn contains 1 M Na₂SO₄, 2 M ZnSO₄, 0.1 M H₃BO₃. The plating current density is 50 mA·cm⁻². And the deposition duration is extended to 18 min obtaining about 15 mAh·cm⁻² Zn metal on copper mesh or copper foil.

1.3 The preparation of rGO coated CZ (RCZ)

Disperse 25 mg GO in 25 mL deionized water with ultrasonic for 30 min obtaining a transparent and dark yellow solution. Immerse CZ in GO solution for 2 min.

1.4 The preparation of AC cathode

The cathode was prepared with 70 wt% active carbon, 20 wt% Supper P, and 10 wt% carboxy methyl cellulose (CMC) on carbon cloth. It should be dried out in a vacuum oven over 12 h. Then cut it into 1 cm \times 1 cm rectangular area, the average loading of active materials is about 5 mg·cm⁻².

1.5 Material and electrochemical characterization

The surface morphology of bare Zn coated Zn before and after cycling were detected by SEM with an EDX detector (JEOL JSM-6480, Japan) operated at 15 kV. XRD was carried out on a Rigaku TTR III device operating at 40 kV and 150 mA to ensure the successful preparation of RCZ anode, using Cu target K α radiation (λ = 0.1514 nm).

CR2032 type coin cells were fabricated with 2 mol·L⁻¹ ZnSO₄ electrolyte at room temperature. The RCZ and FCZ anodes were cut into 1 cm \times 1 cm as well as. Glass fiber that was cut into a circle with a diameter of 16 mm was employed as a separator to segregate anode and cathode. The symmetric cells galvanostatic cycling, coulombic efficiency, and full cells long-term charging/discharging test were

all conducted with NEWARE BESTA system battery-testing instrument. Corrosion test and linear sweep voltammetry (LSV) were performed by EC-Lab workstation. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were tested by Ivium electrochemical workstation. The EIS measurements were tested at a frequency from 0.01 Hz to 100 Hz. Symmetric cells with different zinc anodes were assembled to monitor real-time changes during the process of Zn deposition by optical microscopy (RX50M China).

2. Simulation

The simulation was employed to simulate the Zn-ion deposition behavior with different morphology on surface. The rectangle of this simplified 2D model represents a tiny area of anode surface and the upper side represents the cathode, the lower side represents the anode. The ion conductivity of the electrolyte was set to 36 S·m⁻¹, and the reaction was occurs under the exchange current density of 30 mA·cm⁻² on anode. The potential of Zn follows the Equation S1.

$$E = -0.763 - \frac{RT}{2F} \cdot \log \frac{I}{0.lc}$$
 Equation S1

Where the E, R, T, F, and c is potential, ideal gas constant, Kelvin temperature, Faraday constant, and Zn-ion concentration, respectively.

The secondary current density distribution was simulated by finite element simulation, and the results was calculated through the equation from Equation S2 to Equation S5.

$$\nabla \cdot i_l = Q_l$$
Equation S2 $\nabla \cdot i_s = Q_s$ Equation S3 $i_l = -\sigma_l \nabla \varphi_l$ Equation S4 $i_s = -\sigma_s \nabla \varphi_s$ Equation S5

Where *i*, *Q*, σ , and φ are current density, electric quantity, conductivity, and electric potential, respectively. The simulation constructed mentioned above is an ideal model without the consideration of condition fluctuation.

Reference

 D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, "Processable aqueous dispersions of graphene nanosheets," *Nature Nanotechnology*, vol. 3, pp. 101-105, 2008.