Supporting Information

In-situ embedding of nanocylindrical Bi₂₅FeO₄₀ into scaffold-C₃N₄ for enhanced Z-scheme photocatalytic degradation

Yile WANG^{1,†}, Yuhui MA^{2,†}, Liang CHU^{3,*}, and Xing'ao LI^{1,*}

¹Institute of Advanced Materials & School of Materials Science and Engineering & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

² School of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, China

³ Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China

*Corresponding author e-mail: chuliang@hdu.edu.cn, lixa@njupt.edu.cn † These authors contributed equally to this work

Figure S1. Morphologies of (a) s-C₃N₄ precursor before washing, and (b) final outputs-C₃N₄.

Figure S2. (a) Morphology of the composites and (b-e) its corresponding EDS spectrum.

Figure S3. Actual removal performances of MB and the corresponding UV-VIS absorption spectrum.

Figure S4. Catalysts attracted by the adjacent magnet.