

Supporting Information

Low-cost high performance sustainable triboelectric nanogenerator based on laboratory waste

Archana PANDA¹, Kunal Kumar DAS¹, Kushal Ruthvik KAJA^{2,*}, Venkataramana GANDI², Sunit Gourav MOHANTY³, and Basanta Kumar PANIGRAHI^{4,*}

¹Department of Electronics and Communication Engineering, Siksha O Anusandhan (deemed to be University), Bhubaneswar 751030, India

² Department of Physics, Vellore Institute of Technology, Vijayawada 522237, India

³Department of Environmental Sciences, Sambalpur University, Burla 768019, India

⁴ Department of Electrical Engineering, Siksha O Anusandhan (deemed to be University), Bhubaneswar 751030, India

*Corresponding author e-mail: ruthvik_015@dgist.ac.kr, basantapanigrahi@soa.ac.in

Figure S1. Color mapping of (a) glove, and (b)glass.

Table S1. Element percentage of glove.

Element	Atomic %
С	94.73
Ν	5.27

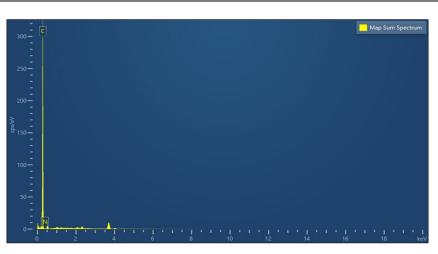


Figure S2. EDS spectra of glove.

Table S2. Element percentage of glass.

Element	Atomic %
С	7.59
0	55.61
Na	8.49
Si	25.12
Ca	6.36

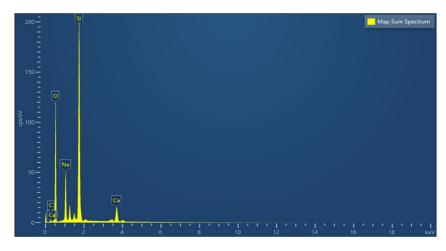


Figure S3. EDS spectra of glass.

Table S3. Comparison table of waste material based TENG.

Material-1	Material-2	Voltage	Current	Reference
Polypropylene	Wool	4.2 V	2.7 nA	[32]
PVA	Chitosan	20 V	200 nA	[33]
Plastic PET	Glass	185 V	1.25 μA	[34]
Glove	Glass	220 V	25 μΑ	This study