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Abstract 

                The present work aims at studying and searching for the most suitable and practicable repairing 
condition for microstructural restoration, which could provide the desired microstructural characteristics by 
rejuvenation method of hot isostatic pressing (HIP), followed by 12 heat treatment conditions for long-term 
serviced gas turbine blades made of cast nickel base superalloy grade IN-738 operated by Electricity 
Generating Authority of Thailand (EGAT). During heat treatment process, coarse carbides and over-
exposed coarse gamma prime precipitates, which had formed previously during service, would dissolve into 
the matrix during solution treatment. Then specimens were processed through a series of precipitation 
aging, which re-precipitated the strengthening phase to form the proper morphology in size and shape as 
well as distribution that is almost similar to the new one. Metallography examination had been performed 
by using light optical microscopy after hot isostatic pressing and heat treatments to evaluate the rejuvenated 
microstructures.  
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Introduction 
 

Nickel-based superalloys have been 
developed to be utilized at high temperature 
applications. The microstructures and mechanical 
properties (at low to high temperatures) can  
be related to their manufacturing processes. Many 
mechanical properties are strongly related to the 
microstructures. In the new, heat treated alloy, the 
gamma prime (γ’) particles are arranged properly 
in a structure, which results in an optimum balance 
of tensile, fatigue, and creep properties.(1) Several 
previous research works(2-12) had been carried out 
to investigate these relationships of microstructure-
mechanical properties. One of these processes  
is heat treatment which solutioning is generally 
followed by a single or a double aging sequence  
to  precipitate  homogeneous  distributions of either  

 
 
 

cuboidal or spherical gamma prime within the 
grains interior as well as discrete grain boundary 
carbides.(1) The size, volume fraction and 
distribution of gamma prime phase are vital to 
control the creep strength at intermediate to high 
stresses. The proper heat-treated microstructure can 
provide their phase stability, and adequately high 
strength and good ductility even after long-term 
thermal exposure. The heat treatment processes for 
nickel-based superalloys continue to change in 
order to optimise numerous mechanical and 
physical properties.(13-21) This allows for the 
selection of heat treatment parameters to become 
more advantageous. 
 

The aim of this research work is to 
determine  the  most suitable and practicable 
repair-condition  which  could  provide  the  proper  
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microstructural characteristics by rejuvenation 
method of hot isostatic pressing (HIP) followed by 
various methods of heat treatment for gas turbine 
blades made of casting nickel based superalloy 
grade IN-738 after 50,000-hour service operated by 
Electricity Generating Authority of Thailand 
(EGAT). 
 
Material and Experimental Procedure 
 

The cast nickel-based superalloy in this 
study was IN-738. The chemical composition of 
the alloy is shown in Table 1. Rectangular plates, 
having a dimension of 1 cm2, were cut from the 
most severe degradation zone of turbine blades. 
HIP condition is as follows: specimens were HIPed 
at pressure of 100 MPa for 86.4 ks at 1473 K,  
and then the HIPed specimens were heat treated 
according to heat treatment conditions including 
solution treatment, primary and secondary 
precipitate aging treatments in vacuum furnace (see 
experimental heat treatment details in Table 2). 
Heat treated plates were cross-sectioned in order to 
observe the microstructure compared to those of 
parallel grinded and polished surface of turbine 
blades. All sectioned samples were polished using 
standard metallographic techniques and were 
subsequently etched in marble etchant, which has 
the following chemical composition: 10 g CuSO4, 
50 ml HCl, and 50 ml H2O. The microstructures of 
heat treatment samples were studied by scanning 
electron microscope with secondary electron mode 
and image analyser.  
 
Table 1. Chemical composition in weight% of IN-738 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Results and Discussion 
 
The Microstructure of As-received Alloy 
 

An optical micrograph, obtained from the 
transverse sections at about mid blade height of the 
airfoil, is shown in Figure 1. The microstructure of 
as-cast alloy generally consists of extensive 
precipitation of ordered L12 γ’ intermetallic phase 
within dendrite core and in the interdendritic 
region. The agglomerated gamma prime particles 
can also be seen. Coalescence of the gamma prime 
particles, as a result of long-term service, seems to 
occur continually, causing larger and more rounded 
particles. In this study, the coarse gamma prime 
particle size was approximately 1.2 μm. The airfoil 
microstructure shows significant degradation in 
service. The gamma prime particles had 
spheroidised and coarsened in the airfoil samples. 
This type of microstructure is theoretically 
expected to provide lower creep resistance during 
loading at high temperatures.  
 
Heat Treated Microstructure after HIP Process 
Investigated by OM 
 

All of the reheat treatments after HIP 
process in long-term serviced turbine blade IN-738  
provided the various microstructural restoration 
characteristics with more homogeneous structure 
compared to the long-term serviced one, as shown 
in Figures 2-13.  It was found that the heat treated 
microstructures,   according  to  programs  No. 1-3,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ni Cr Co Ti Al W Mo Ta Nb C Fe B Zr 
Bal. 15.84 8.5 3.47 3.46 2.48 1.88 1.69 0.92 0.11 0.07 0.12 0.04 

Table 2. Heat treatment conditions applied to long term exposed IN-738 
 

No. Solution annealing Primary precipitate aging Secondary precipitate aging 

1 -------------------- ------------------- 1118 K / 86.4 ks (AC) 

2 -------------------- 1198 K / 3.6 ks (AC) 1118 K / 86.4 ks (AC) 

3 -------------------- 1328 K / 3.6 ks (AC) 1118 K / 86.4 ks (AC) 

4* 1398 K / 7.2 ks (AC) ------------------- 1118 K / 86.4 ks (AC) 

5 1398 K / 7.2 ks (AC) 1198 K / 3.6 ks (AC) 1118 K / 86.4 ks (AC) 

6 1398 K / 7.2 ks (AC) 1328 K / 3.6 ks (AC) 1118 K / 86.4 ks (AC) 

7 1448 K / 7.2 ks (AC) ------------------- 1118 K / 86.4 ks (AC) 

8 1448 K / 7.2 ks (AC) 1198 K / 3.6 ks (AC) 1118 K / 86.4 ks (AC) 

9 1448 K / 7.2 ks (AC) 1328 K / 3.6 ks (AC) 1118 K / 86.4 ks (AC) 

10 1478 K / 7.2 ks (AC) ------------------- 1118 K / 86.4 ks (AC) 

11 1478 K / 7.2 ks (AC) 1198 K / 3.6 ks (AC) 1118 K / 86.4 ks (AC) 

12 1478 K / 7.2 ks (AC) 1328 K / 3.6 ks (AC) 1118 K / 86.4 ks (AC) 

∗ Standard Heat Treatment condition 
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consist of uniform distribution of very fine gamma 
prime particles precipitating in the matrix in near 
cubic shape, Figures 2-4. It should be noted that 
each microstructure contains only a single size of 
precipitated gamma prime particles. These have 
sizes in the narrow range of between 0.15-0.3 μm.  
In these structures, it could be counted that the 
heating during HIP process practically worked as 
solutioning at 1473 K for 18 ks and then followed 
by aging at 1118 K for 86.4 ks. The microstructure 
after HIP process was already prepared for the next 
step precipitation aging where the previously 
existed coarse gamma prime particles were almost 
dissolved already into the matrix. When 
precipitation (secondary) aging was applied, fine 
gamma prime particles re-precipitated in the matrix 
at a high volume fraction.    

 

       
                          
Figure 1.  As-received  microstructure  after  long-term 
                  service    showing    the   coalescence  of   γ’ 
                  particles,  areas  of γ-γ’  eutectic  and  grain  
                  boundary carbides 
 

                       
 
Figure 2. After  heat-treatment  at 1118  K  for  86.4 ks 
                (AC); Condition No. 1 
 

                        
 
Figure 3. After  heat-treatment  at  1198  K  for  3.6  ks  
                (AC),   and   1118  K   for   86.4  ks   (AC)  ; 
                Condition No. 2 

 

                
 
Figure 4. After   heat-treatment  at  1328  K  for  3.6  ks  
                (AC),   and   1118  K   for   86.4  ks    (AC)  ;  
                Condition No. 3 
 

The solution treatment at 1398 K for 7.2 ks 
had more effect on microstructure characteristics. 
The solutioning at this temperature provided 
morphology with coarser γ’ phase precipitation, as 
shown in Figures. 5-7. The average diameter size 
of γ’ particles was about 0.35 μm for coarse 
particles. The solutioning at 1398 K for 7.2 ks 
caused more dissolution into the matrix of previous 
or residual coarse γ’ particles. After final aging at 
1118 K for 86.4 ks with or without primary aging, 
coarse γ’ particles could uniformly reprecipitate 
into the matrix with coarser size and higher volume 
fraction of total γ’ precipitated phase compared to 
the final microstructures according to conditions 
No. 1-3. The addition of primary aging (at both 
1198 K and 1328 K for 3.6 ks) had only a slight 
effect on microstructural characteristic investigated 
by OM.  

 

               
 
Figure 5. After   heat-treatment  at  1398  K  for  7.2  ks  
                (AC)  and   1118  K  for   86.4 ks  (AC)  ; 
                Condition No. 4 

 

                       
 
Figure 6. After  heat-treatment  at  1398  K  for  7.2   ks   
                 (AC), 1198 K for 3.6 ks (AC), and 1118 K for  
                 86.4 ks (AC); Condition No. 5 
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Figure 7. After   heat-treatment  at  1398  K   for  7.2  ks  
                (AC), 1328 K for 3.6 ks (AC), and 1118 K  for  
                86.4 ks (AC); Condition No. 6 

 

Figures 8-13. show the effect of solution 
treatment at high temperature of 1448 K and  
1478 K for 7.2 ks on final microstructures. 
Compared to microstructures with lower 
solutioning temperature (at 1398 K) of conditions 
No. 1-3, it was found that these higher temperatures  
of solutioning provided the coarser average size  
of precipitated γ’ particles. However, the volume 
fractions of finer γ’ particles in these final 
microstructures were less than those of final 
microstructures according to conditions No. 1-6. 
The dispersed finer γ’ particles in the matrix should 
be the result of γ’ precipitation during long term 
aging after solutioning. The primary aging at 1198 
K for 3.6 ks (see Figures 9 and 12) provided a 
slight effect on the microstructure, but only 
resulted in lower volume fraction of γ’ particles 
compared to microstructures without primary 
aging. However, in contrast, when primary aging at 
the higher temperature of 1328 K was applied for 
3.6 ks, the γ’ precipitation could take place rapidly, 
resulting in slightly higher volume fraction and 
coarser size of very fine γ’ particles after final 
aging. 
 

          
        
Figure 8. After   heat-treatment  at  1448  K  for  7.2 ks  
                (AC)  and  1118  K  for  86.4  ks  (AC)   ; 
                Condition No. 7 

 

 

                          
 

Figure 9.  After  heat-treatment  at  1448  K  for  7.2  ks  
                  (AC), 1198 K for 3.6 ks (AC), and 1118 Kfor  
                  86.4 ks (AC); Condition No. 8 
 

                      
 

Figure 10. After  heat-treatment  at  1448  K  for  7.2  ks  
                   (AC), 1328  K  for  3.6 ks (AC), and 1118 K  
                   for 86.4 ks (AC); Condition No. 9 
 

                       
 

Figure 11.  After  heat-treatment  at  1478  K  for  7.2 ks  
                   (AC)  and  1118  K  for  86.4  ks  (AC) ;  
                 Condition No. 10 

 

                       
 

Figure 12.  After  heat-treatment  at  1478  K  for  7.2 ks  
                   (AC),  1198  K for 3.6 ks. (AC), and 1118 K  
                   for 86.4 ks (AC); Condition No. 11 
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Figure 13.  After  heat-treatment  at  1478  K  for  7.2 ks  
                   (AC),  1328  K  for 3.6 ks (AC), and 1118 K  
                   for 86.4 ks (AC); Condition No. 12 
 
Conclusion  
 

1. The most proper solutioning temperature 
in this experimental program that should be applied 
after HIP process is 1398 K. This could provide the 
final microstructures made up of highest volume 
fractions with proper shape and size of fine γ’ 
particles. 

 
2. The addition of primary aging could 

assist in more uniform distribution of both coarse 
and very fine γ’ particles as well as the increase of 
volume fractions compared to those without 
primary aging. However, applying the primary 
aging after very high solutioning temperatures (of 
1448 K and 1478 K) would lead to fast and 
abnormal precipitation, resulting in partially coarse 
γ’ particles, conditions No. 7-12. 

 
3. The most proper heat treatment conditions 

after HIP process for the alloy should be conditions 
No. 4 (standard heat treatment), 5, and 6 due 
 to their highest volume fractions of γ’ particles, 
which were nearly 60%, as well as coarse γ’ 
particles that precipitated uniformly and densely. 
However, mechanical testing, especially at 
elevated temperatures such as creep, fatigue and 
thermal fatigue should be performed in further 
works to evaluate and confirm the relationship 
between the rejuvenated microstructures and 
mechanical properties. 
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