Thermal behavior of solid acids in the Rb3H(SO4)2-RbHSO4 system under ambient atmosphere

Authors

  • Chatr Panithipongwut KOWALSKI Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
  • Permpoon CHAIJAROEN Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
  • Farook KAEWNIYOM Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand

DOI:

https://doi.org/10.55713/jmmm.v31i1.1008

Keywords:

Solid acids, Rb3H(SO4)2, RbHSO4, Rb5H(SO4)4, Phase transition

Abstract

The thermal behavior of solid acids in the Rb3H(SO4)2-RbHSO4 system under ambient atmosphere has been studied in comparison to the previously reported high-temperature behavior of the same system under humidified atmosphere. The findings showed that, under this level of humidity, the transition of RbHSO4, the transition of Rb5H3(SO4)4, and the disproportionation of Rb3H(SO4)2, occurred at the same temperatures as those under humidified atmosphere. However, the results from differential scanning calorimetry did not reveal the reaction temperature between Rb3H(SO4)2 and RbHSO4 due to the slow process. The dehydration temperatures of Rb5H3(SO4)4 were surprisingly similar between the systems under low and high humidity levels, while the dehydration of RbHSO4 under low humidity occurred at a lower temperature than that previously reported. Additionally, the findings suggested that the humidity levels played some roles in the kinetics of the reaction between Rb3H(SO4)2 and RbHSO4 which should be further studied.

Downloads

Download data is not yet available.

References

V.A. Komornikov, V.V. Grebenev, P.V. Andreev, and E.V. Dmitricheva, "Study of phase equilibria in the Rb3H(SO4)2-RbH2PO4-H2O system," Crystallography Reports, vol. 60(3), pp. 431-437, 2015, doi: 10.1134/S1063774515030086. DOI: https://doi.org/10.1134/S1063774515030086

V.A. Komornikov, V.V. Grebenev, I.P. Makarova, E.V. Selezneva, and P.V. Andreev, "Production of complex rubidium and cesium hydrogen sulfate‒phosphates," Crystallography Reports, vol. 61(4), pp. 675-681, 2016, doi: 10.1134/S1063774516040106. DOI: https://doi.org/10.1134/S1063774516040106

V.A. Komornikov, V.V. Grebenev, I.S. Timakov, D.A. Ksenofontov, P.V. Andreev, I.P. Makarova, and E.V. Selezneva, "Production of complex hydrosulphates in the K3H(SO4)2–Rb3H(SO4)2 series: Part I," Crystallography Reports, vol. 64(3), pp. 479-483, 2019, doi: 10.1134/S1063774519030143. DOI: https://doi.org/10.1134/S1063774519030143

E.V. Selezneva, I.P. Makarova, I.A. Malyshkina, N.D. Gavrilova, V.V. Grebenev, V.K. Novik, and V.A. Komornikov, "New super-protonic crystals with dynamically disordered hydrogen bonds: cation replacements as the alternative to temperature increase," Acta Crystallogr B Struct Sci Cryst Eng Mater, vol. 73(Pt 6), pp. 1105-1113, 2017, doi: 10.1107/S2052520617012847. DOI: https://doi.org/10.1107/S2052520617012847

D.Z. Yi, S. Sanghvi, C.P. Kowalski, and S.M. Haile, "Phase behavior and superionic transport characteristics of (MxRb1-x)3 H(SeO4)2 (M = K or Cs) solid solutions," Chem Mater, vol. 31(23), pp. 9807-9818, 2019. [Online]. Available: ://WOS: 000502418000024. DOI: https://doi.org/10.1021/acs.chemmater.9b03856

A. Ikeda, D.A. Kitchaev, and S.M. Haile, "Phase behavior and superprotonic conductivity in the Cs1-xRbxH2PO4 and Cs1-xKxH2PO4 systems," Journal of Materials Chemistry A, vol. 2(1), pp. 204-214, 2014. [Online]. Available: ://000327618600024.

C. Panithipongwut, "Phase behavior of complex superprotonic solid acids," Doctor of Philosophy Dissertation (Ph.D.), Materials Science, California Institute of Technology, Pasadena, California, 2013.

A. Ikeda, "Superprotonic solid acids : thermochemistry, structure, and conductivity," Doctor of Philosophy Dissertation (Ph.D.), Materials Science, California Institute of Technology, Pasadena, California, 2013.

A. Ikeda, and S.M. Haile, "Examination of the superprotonic transition and dehydration behavior of Cs0.75Rb0.25H2PO4 by thermogravimetric and differential thermal analyses," Solid State Ionics, vol. 181(3-4), pp. 193-196, 2010, doi: Doi 10.1016/ J.Ssi.2009.10.019. DOI: https://doi.org/10.1016/j.ssi.2009.10.019

Y.K. Taninouchi, T. Uda, Y. Awakura, A. Ikeda, and S.M. Haile, "Dehydration behavior of the superprotonic conductor CsH2PO4 at moderate temperatures: 230 to 260 degrees C," Journal of Materials Chemistry, Article vol. 17(30), pp. 3182-3189, 2007, doi: 10.1039/b704558c. DOI: https://doi.org/10.1039/b704558c

S.M. Haile, C.R.I. Chisholm, K. Sasaki, D.A. Boysen, and T. Uda, "Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes," Faraday Discussions, vol. 134, pp. 17-39, 2007, doi: 10.1039/b604311a. DOI: https://doi.org/10.1039/B604311A

S. Takeya, S. Hayashi, H. Fujihisa, and K. Honda, "Phase transition in a superprotonic conductor Cs2(HSO4)(H2PO4) induced by water vapor," Solid State Ionics, vol. 177(15-16), pp. 1275-1279, 2006, doi: Doi 10.1016/J.Ssi.2006.06.012. DOI: https://doi.org/10.1016/j.ssi.2006.06.012

Y. Matsuo, Y. Tanaka, J. Hatori, and S. Ikehata, "Proton activity and spontaneous strain of Cs3H(SeO4)2 in the phase transition at 369 K," Solid State Communications, vol. 134(5), pp. 361-365, 2005, doi: 10.1016/j.ssc.2005.01.045. DOI: https://doi.org/10.1016/j.ssc.2005.01.045

Y. Matsuo, J. Hatori, Y. Yoshida, K. Saito, and S. Ikehata, "Proton conductivity and spontaneous strain below superprotonic phase transition in Rb3H(SeO4)2," Solid State Ionics, vol. 176(31-34), pp. 2461-2465, 2005, doi: 10.1016/j.ssi.2005.04.047. DOI: https://doi.org/10.1016/j.ssi.2005.04.047

C.R.I. Chisholm and S.M. Haile, "Superprotonic behavior of Cs2(HSO4)(H2PO4) - a new solid acid in the CsHSO4-CsH2PO4 system," Solid State Ionics, vol. 136, pp. 229-241, 2000, doi: Doi 10.1016/S0167-2738(00)00315-5. DOI: https://doi.org/10.1016/S0167-2738(00)00315-5

C.R.I. Chisholm and S.M. Haile, "Structure and thermal behavior of the new superprotonic conductor Cs2(HSO4)(H2PO4). (vol, B55, pp. 937, 1999)," Acta Crystallographica Section B-Structural Science, vol. 56, pp. 332-332, 2000, doi: Doi 10.1107/ S0108768100003992. DOI: https://doi.org/10.1107/S0108768100003992

S.M. Haile, P.M. Calkins, and D. Boysen, "Superprotonic conductivity in beta-Cs3(HSO4)2(Hx(P,S)O4)," Solid State Ionics, vol. 97(1-4), pp. 145-151, 1997, doi: Doi 10.1016/S0167-2738(97)00066-0. DOI: https://doi.org/10.1016/S0167-2738(97)00066-0

S.M. Haile, G. Lentz, K.D. Kreuer, and J. Maier, "superprotonic conductivity in Cs3(HSO4)2(H2PO4),", Solid State Ionics, vol. 77, pp. 128-134, 1995, doi: Doi 10.1016/0167-2738(94)00291-Y. DOI: https://doi.org/10.1016/0167-2738(94)00291-Y

S.M. Haile, K.D. Kreuer, and J. Maier, "Structure of Cs3(HSO4)2 (H2PO4) - a new compound with a superprotonic phase transition," Acta Crystallographica Section B-Structural Science, vol. 51, pp. 680-687, 1995, doi: Doi 10.1107/S0108768195005684. DOI: https://doi.org/10.1107/S0108768195005684

O.S. Hernández-Daguer, H. Correa, and R.A. Vargas, "Phase behaviour and superionic phase transition in K3H(SeO4)2," Ionics, vol. 21(8), pp. 2201-2209, 2015, doi: 10.1007/s11581-015-1404-4. DOI: https://doi.org/10.1007/s11581-015-1404-4

D.-K. Lim, J. Liu, S.A. Pandey, H. Paik, C.R.I. Chisholm, J.T. Hupp, and S.M. Haile, "Atomic layer deposition of Pt@CsH2PO4 for the cathodes of solid acid fuel cells," Electrochimica Acta, vol. 288, pp. 12-19, 2018, doi: https://doi.org/10.1016/j.electacta. 2018.07.076. DOI: https://doi.org/10.1016/j.electacta.2018.07.076

D.-K. Lim, A.B. Plymill, H. Paik, X. Qian, S. Zecevic, C.R.I. Chisholm, and S.M. Haile, "Solid acid electrochemical cell for the production of hydrogen from ammonia," Joule, vol. 4(11), pp. 2338-2347, 2020, doi: https://doi.org/10.1016/j.joule. 2020.10.006. DOI: https://doi.org/10.1016/j.joule.2020.10.006

A. Ikeda and S.M. Haile, "The thermodynamics and kinetics of the dehydration of CsH2PO4 studied in the presence of SiO2," Solid State Ionics, vol. 213, pp. 63-71, 2012, doi: Doi 10.1016/ J.Ssi.2011.09.018. DOI: https://doi.org/10.1016/j.ssi.2011.09.018

L.A. Cowan, R.M. Morcos, N. Hatada, A. Navrotsky, and S.M. Haile, "High temperature properties of Rb3H(SO4)2 at ambient pressure: Absence of a polymorphic, superprotonic transition," Solid State Ionics, vol. 179(9-10), pp. 305-313, 2008, doi: 10.1016/j.ssi.2008.02.016. DOI: https://doi.org/10.1016/j.ssi.2008.02.016

Y. Taninouchi, T. Uda, and Y. Awakura, "Dehydration of CsH2PO4 at temperatures higher than 260 degrees C and the ionic conductivity of liquid product," Solid State Ionics, Article vol. 178(31-32), pp. 1648-1653, 2008, doi: 10.1016/ j.ssi.2007.10.017. DOI: https://doi.org/10.1016/j.ssi.2007.10.017

C. Panithipongwut and S.M. Haile, "High-temperature phase behavior in the Rb3H(SO4)2–RbHSO4 pseudo-binary system and the new compound Rb5H3(SO4)4," Solid State Ionics, Article; Proceedings Paper vol. 213, pp. 53-57, 2012, doi: 10.1016/ j.ssi.2011.10.016. DOI: https://doi.org/10.1016/j.ssi.2011.10.016

M. Sakashita, H. Fujihisa, K.I. Suzuki, S. Hayashi, and K. Honda, "Using x-ray diffraction to study thermal phase transitions in Cs5H3(SO4)4⋅xH2O,", Solid State Ionics, vol. 178(21-22), pp. 1262-1267, 2007, doi: DOI 10.1016/j.ssi.2007.06.005. DOI: https://doi.org/10.1016/j.ssi.2007.06.005

K. Itoh, H. Ohno, and S. Kuragaki, "Disordered structure of ferroelectric rubidium hydrogen sulfate in the paraelectric phase," J Phys Soc Jpn, vol. 64(2), pp. 479-484, 1995, doi: 10.1143/Jpsj.64.479. DOI: https://doi.org/10.1143/JPSJ.64.479

S. Fortier, M.E. Fraser, and R.D. Heyding, "Structure of trirubidium hydrogenbis(sulfate), Rb3H(SO4)2," Acta Crystallographica Section C, vol. 41(8), pp. 1139-1141, 1985, doi: 10.1107/ s0108270185006898. DOI: https://doi.org/10.1107/S0108270185006898

Downloads

Published

2021-03-28

How to Cite

[1]
C. P. KOWALSKI, P. CHAIJAROEN, and F. KAEWNIYOM, “Thermal behavior of solid acids in the Rb3H(SO4)2-RbHSO4 system under ambient atmosphere”, J Met Mater Miner, vol. 31, no. 1, Mar. 2021.

Issue

Section

Original Research Articles