On the mechanical properties of Al/Cu-grid/Al intermetallic composite


  • Hamza ESSOUSSI Laboratory of Energy, Materials and Sustainable Development, ENSAM, Moulay Ismail University, 15290, Meknes, Morocco
  • Said ETTAQI Laboratory of Energy, Materials and Sustainable Development, ENSAM, Moulay Ismail University, 15290, Meknes, Morocco




Al/Cu-grid/Al metallic composite, Al-based composite, Interface diffusion


The present paper deals with the experimental investigation of new process combining static compression with high temperature as a simple way to prepare new Al/Cu-grid/Al metallic composite (MC) that consists of Aluminum matrix and Copper grid acting as ductile reinforcement stacked between the Al sheets. At the stage of composite fabrication, two different thermal cycles were tested to highlight the effect of processing temperature on the layers’ adherence and the mechanical properties of the prepared composites. Consequently, the microstructural and mechanical results revealed that the compression at 630℃ for 30 min, then furnace cooled to 450℃ followed by air cooling led to improved mechanical properties and good adherence of Al sheets.


Download data is not yet available.


P. Garg, A. Jamwal, D. Kumar, K.K. Sadasivuni, C.M. Hussain, and P. Gupta, “Advance research progresses in aluminium matrixcomposites: Manufacturing & applications,” J. Mater. Res. Technol., vol. 8(5), pp. 4924-4939, 2019, doi: 10.1016/j.jmrt.2019.06.028.

D.K. Koli, G. Agnihotri, and R. Purohit, “Advanced aluminium matrix composites: The critical need of automotive and aerospace engineering fields,” Mater. Today Proc., vol. 2(4-5), pp. 3032-3041, 2015, doi: 10.1016/j.matpr.2015.07.290.

R. Casati, and M. Vedani, “Metal matrix composites reinforced by nano-particles—A review,” Metals (Basel)., vol. 4(1), pp. 65-83, 2014, doi: 10.3390/met4010065.

C.-Y. Chen and W.-S. Hwang, “Effect of annealing on the interfacial structure of aluminum-copper joints,” Materials Transactions, vol. 48(7), pp. 1938-1947, 2007. doi: 10.2320/ matertrans.MER2006371.

G. Heness, R. Wuhrer, and W.Y. Yeung, “Interfacial strength development of roll-bonded aluminium/copper metal laminates,” Mater. Sci. Eng. A, vol. 483-484(1-2 C), pp. 740-742, 2008, doi: 10.1016/j.msea.2006.09.184.

M. Abbasi, A. Karimi Taheri, and M.T. Salehi, “Growth rate of intermetallic compounds in Al/Cu bimetal produced by cold roll welding process,” J. Alloys Compd., vol. 319(1-2), pp. 233-241, 2001, doi: 10.1016/S0925-8388(01)00872-6.

Y. qiu Han, L. hua Ben, J. jin Yao, S. wei Feng, and C. jing Wu, “Investigation on the interface of Cu/Al couples during isothermal heating,” Int. J. Miner. Metall. Mater., vol. 22(3), pp. 309-318, 2015, doi: 10.1007/s12613-015-1075-1.

H. Kawakami, J. Suzuki, and J. Nakajima, “Bonding process of Al/Cu dissimilar bonding with liquefaction in air,” Weld. Int., vol. 21(12), pp. 836-843, 2007, doi: 10.1080/09507110701843902.

Y. Wei, J. Li, J. Xiong, and F. Zhang, “Investigation of interdiffusion and intermetallic compounds in Al-Cu joint produced by continuous drive friction welding,” Eng. Sci. Technol. an Int. J., vol. 19(90-95), 2015, doi: 10.1016/j.jestch.2015.05.009.

C.J. Boehlert, and D.B. Miracle, “Intermetallic matrix composites,” Compr. Compos. Mater. II, vol. 9795(95), pp. 482-524, 2017, doi: 10.1016/B978-0-12-803581-8.09979-3.

A.P. Zhilyaev, and T.G. Langdon, “Using high-pressure torsion for metal processing: Fundamentals and applications,” Prog. Mater. Sci., vol. 53(6), pp. 893-979, 2008, doi: 10.1016/ j.pmatsci.2008.03.002.

R.B. Figueiredo, and T.G. Langdon, “Fabricating ultrafine-grained materials through the application of severe plastic deformation: A review of developments in Brazil,” Journal of Materials Research and Technology, vol. 1(1). Elsevier Editora Ltda, pp. 55-62, 2012, doi: 10.1016/S2238-7854(12) 70010-8.

Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong, “Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process,” Scr. Mater., vol. 39(9), pp. 1221-1227, 1998, doi: 10.1016/S1359-6462(98)00302-9.

X. Fu, R. Wang, Q. Zhu, P. Wang, and Y. Zuo, “Effect of annealing on the interface and mechanical properties of Cu-Al-Cu laminated composite prepared with cold rolling,” Materials (Basel)., vol. 13(2), 2020, doi: 10.3390/ma13020369.

Y.H. Yang, G.Y. Lin, D.D. Chen, R. Zhang, D.Z. Wang, and F. Qi, “Fabrication of Al-Cu laminated composites by diffusion rolling procedure,” Mater. Sci. Technol. (United Kingdom), vol. 30(8), pp. 973-976, 2014, doi: 10.1179/1743284713Y. 0000000397.

S. Madhusudan, M.M.M. Sarcar, and N.B.R.M. Rao, “Mechanical properties of aluminum-copper(p) composite metallic materials,” J. Appl. Res. Technol., vol. 14(5), pp. 293-299, 2016, doi: 10.1016/j.jart.2016.05.009.

J. K. Kim, and Y. wing Mai, “High strength, high fracture toughness fibre composites with interface control-A review,” Compos. Sci. Technol., vol. 41(4), pp. 333-378, 1991, doi: 10.1016/0266-3538(91)90072-W.




How to Cite

H. ESSOUSSI and S. ETTAQI, “On the mechanical properties of Al/Cu-grid/Al intermetallic composite”, J Met Mater Miner, vol. 31, no. 1, Mar. 2021.



Original Research Articles