Investigating rheological, morphological and mechanical properties of PBS/PBAT blends
Keywords:
Biodegradable polymer, Poly(butylene adipate-co-terephthalate), Poly(butylene succinate), Polymer blend; Rheology, MorphologyAbstract
Morphological, rheological and mechanical properties of various biodegradable poly(butylene succinate) (PBS)/poly(butylene adipate-co-terephthalate) (PBAT) blends via conventional melt blending technique are studied. The morphology, rheology, and tensile properties of the PBS/PBAT blends were observed by scanning electron microscope (SEM), rotational rheometer, and universal testing machine, respectively. The SEM micrographs of the PBS/PBAT blends reveal an occurrence of phase separation indicating by a presence of spherical particles/cavities for a range of 10 to 30 wt% (i.e. PBS90-PBS70), and 70 to 90 wt% (i.e. PBS30-PBS10) PBT content and co-continuous structure for a range of 40 to 60 wt% (i.e. PBS60PBS40) PBAT content. The rheological observation reveals that storage modulus (G’), loss modulus (G’’), and complex viscosity (η*) for the PBS/PBAT lends exhibit similar tendency. The morphological properties of the blends appear to affect the tensile behavior of the PBS/PBAT blends.Downloads
References
Zhang, K., Mohanty, A.K. and Misra, M. (2012). Fully Biodegradable and Biorenewable Ternary Blends from Polylactide, Poly(3-hydroxybutyrate-cohydroxyvalerate) and Poly(butylene succinate) with Balanced Properties. ACS Applied Materials & Interfaces. 4(6): 3091-101.
Auras, R., Harte, B. and Selke, S. (2004). An Overview of Polylactides as Packaging Materials. Macromolcular Bioscience. 4(9): 835-64.
Pilla, S. (2011). Handbook of Bioplastics and Biocomposites Engineering Applications: Wiley.
Ding, W., Jahani, D., Chang, E., Alemdar, A., Park, C.B. and Sain, M. (2016). Development of PLA/cellulosic fiber composite foams using injection molding: Crystallization and foaming behaviors. Composites Part A: Applied Science and Manufacturing. 83: 130-9.
Jamshidian, M., Tehrany, E.A., Imran, M., Jacquot, M. and Desobry, S. (2010). Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Comprehensive Reviews in Food Science and Food Safety. 9(5): 552-71.
Muthuraj, R., Misra, M. and Mohanty, A. (2014). Biodegradable Poly(butylene succinate) and Poly(butyleneadipateco-terephthalate) Blends: Reactive E x t r u s i o n a n d P e r f o r m a n c e Evaluation. J. Polym. Environ. 22(3): 336-49.
John, J., Mani, R. and Bhattacharya, M. (2002). Evaluation of compatibility and properties of biodegradable polyester blends. J. Polym. Sci., Part A: Polym. Chem. 40(12): 2003-14
Nanda, M.R., Misra, M. and Mohanty, A.K. (2011). The Effects of Process Engineering on the Performance of PLA and PHBV Blends. Macromol. Mater. Eng. 296(8): 719-28.
Chieng, B., Ibrahim, N. and Wan Yunus, W. (2010). Effect of organo-modified montmorillonite on poly(butylene succinate)/poly(butylene adipateco-terephthalate) nanocomposites. Express. Polym. Lett. 4(7): 404-14.
Guido, G., Marco, F., Luca, R. and Piero, F. (2011). Synthesis and processing of biodegradable and bio-based polymers by microwave irradiation. 7-27.
Fujimaki, T. (1998). Processability and properties of aliphatic polyesters, ‘BIONOLLE’, synthesized by polycondensation reaction. Polym. Degrad. Stab. 59(1): 209-14.
Soccio, M., Lotti, N., Gigli, M., Finelli, L., Gazzano, M. and Munari, A. (2012). Reactive blending of poly(butylene succinate) and poly (triethylenesuccinate): characterization of the copolymers obtained. Polym. Int. 61(7): 1163-9.
Yoo, E. and Im, S. (1999). Melting behavior of poly (butylene succinate) during heating scan by DSC. J. Polym. Sci., Part B: Polym. Phys. 37(13): 1357-66.
Wang, J., Zheng, L., Li, C., Zhu, W., Zhang, D., and Xiao, Y., et al. (2012). Fully biodegradable blends of poly (butylene succinate) and poly (butylene carbonate): Miscibility, thermal properties, crystallization behavior and mechanical properties. Polym. Test. 31(1): 39-45.
Kim, Y.J. and Park, O.O. (1999). Miscibility a n d b i o d e gr a d ab ility o f p o ly (butylenes succinate)/poly (butylene terephthalate) blends.J. Environ. Polym. Degrad. 7(1): 53-66.
Qiu, Z., Ikehara, T. and Nishi, T. (2003). Poly(hydroxybutyrate)/poly(butylen esuccinate) blends: miscibility and nonisothermal crystallization. Polym. 44(8): 2503-8.
Muthuraj, R., Misra, M. and Mohanty, A.K. (2015). Binary blends of poly(butylene adipate-co-terephthalate) and poly(butylene succinate): A new matrix for biocomposites applications. AIP Conference Proceedings. 1664(1): 150009.
Gu, S.Y., Zhang, K., Ren, J. and Zhan, H. ( 2 0 0 8 ) . M e l t r h e o l o g y o f polylactide/poly (butylene adipateco-terephthalate) blends. Carbohydr. Polym. 74(1): 79-85.
Gan, Z., Abe, H., Kurokawa, H. and Doi, Y. (2001). Solid-state microstructures, thermal properties,and crystallization of biodegradable poly (butylenesuccinate) ( P B S ) and its copolyesters . Biomacromolecules. 2(2): 605-13.
Sykacek, E., Hrabalova, M., Frech, H. and Mundigler, N. (2009). Extrusion of five biopolymers reinforced with increasing wood flour concentration on a production machine, injection moulding and mechanical performance. Composites Part A: Appl. Sci. Manufacturing. 40(8): 1272-82.
Jiang, L., Wolcott, M.P. and Zhang, J. (2006). Study of biodegradable polylactide/ poly (butylene adipate-co-terephthalate) blends.Biomacromolecules.7(1): 199-207.
Rahim, M., Ibrahim, N., Sharif, J. and Yunus, W.W. (2010). Mechanical and thermal properties of poly (vinyl chloride)/poly (butylene adipate-coterephthalate) clay nanocomposites. J. Reinf. Plast. Compos. 29(21): 3219-25.
Cai, Y., Lv, J. and Feng, J. (2013). Spectral characterization of four kinds of biodegradable plastics: poly (lactic acid), poly (butylene sadipate-coterephthalate), poly(hydroxyl butyrate-cohydroxyvalerate) and poly (butylenes succinate) with FTIR and raman spectroscopy. J. Polym. Environ. 21(1): 108-14.
Li, K., Peng, J., Turng, L.S. and Huang, H.X. (2011). Dynamic rheological b e h a vi o r a n d mo r p h o l o g y o f polylactide/poly (butylene sadipateco-terephthalate) blends with various composition ratios. Adv. Polym. Technol. 30(2): 150-7.
Liu, B., Bhaladhare, S., Zhan, P., Jiang, L., Zhang, J. and Liu, L., et al. (2011). Morphology and properties of thermoplastic sugar beet pulp and poly (butyleneadipate-co-terepthalate) blends. Ind. Eng. Chem. Res. 50(24): 13859-65.
Javadi, A., Kramschuster, A.J., Pilla, S., Lee, J., Gong, S. and Turng, L.S. (2010. Processing and characterization of microcellular PHBV/ PBAT blends. Polym. Eng. Sci. 50(7): 1440-8.
Jiang, L., Liu, B. and Zhang, J. (2009). Properties of poly (lactic acid)/poly (butylene adipate-co-terephthalate)/ nanoparticle ternary composites. Ind. Eng. Chem. Res. 48(16): 7594-602.
Jang, M.-O., Kim, S.-B. and Nam, B.-U. (2012). Transesterification effects on miscibility polycarbonate/poly (butylene adipate-co-terephthalate) blends. Polym. Bull. 68(1): 287-98.
Chuayjuljit, S., Chaiwutthinan, P., Raksaksri, L. and Boonmahitthisud, A. (2015). Effects of poly (butylene adipate‐co‐terephthalat e) and ultrafinedwollastonite on the physical properties and crystallization of recycled poly (ethylene terephthalate). J. Vinyl Addit. Technol.
Srithep, Y., Javadi, A., Pilla, S., Turng, L.S., Gong, S. and Clemons, C., et al. (2011). Processing and characterization of recycled poly (ethylene terephthalate) blends with chainextenders, thermoplastic elastomer, and/or poly (butylene adipate‐co‐ terephthalate). Polym. Eng. Sci. 51(6): 1023-32.
Clemons, C., and Gong, S., et al. (2010). Processing and characterization of solid and microcellular PHBV/PBAT blend and its RWF/nanoclay.composites. Composites Part A: Applied Science and Manufacturing. 41(8): 982-90.
Wu, D., Yuan, L., Laredo, E., Zhang, M., Zhou , W. (2012). Interfacial properties, viscoelasticity, and thermal behaviors of poly (butylene succinate)/polylactide blend. IndEngChem Res. 51(5): 2290-8.
Lee, J.K. and Han, C.D. (2000). Evolution of polymer blend morphology during compounding in a twin -screw extruder. Polym. 41(5): 1799-815.
Mezger, T.G. (2006). The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers: Vincentz Network GmbH & Co KG.
Fouissac, E., Milas, M. and Rinaudo, M. (1993). Shear-rate, concentration, molecular weight, and temperature viscosity dependences of hyaluronate, a w o r ml i k e p o l y e l e c t r o l y t e . Macromolecules. 26(25): 6945-51.
Focarete, M.L., Scandola, M., Dobrzynski, P. and Kowalczuk, M. (2002). Miscibility and mechanical properties of blends of (L)-lactide copolymers with atactic poly (3-hydroxybutyrate). Macromolecules. 35(22): 8472-7.
Aravind, I., Eichhorn, K.-J., Komber, H., Jehnichen, D., Zafeiropoulos, N. and Ahn, K.H., et al. (2009). A study on reaction-induced miscibility of poly(trimethylene terephthalate)/ polycarbonate blends. J. Phys. Chem. B. 113(6): 1569-78.
Wu, D., Wu, L., Sun, Y. and Zhang, M. (2007). Rheological properties and crystallization behavior of multi‐ walled carbon nanotube/poly (ε‐ caprolactone) composites. J. Polym. Sci., Part B: Polym. Phys.45(23): 3137-47.
Wu, D., Zhang, Y., Yuan, L., Zhang, M. and Zhou, W. (2010). Viscoelastic interfacial properties of compatibilizedpoly (ε-caprolactone)/polylactideblend. J. Polym. Sci., Part B: Polym. Physs. 48(7): 756-65.
Wang, L., Jing, X., Cheng, H., Hu, X., Yang, L. and Huang, Y. (2012). Blends of linear and long-chain branched poly (l-lactide) s with high melt strength and fast crystallization rate. Ind. Eng. Chem. Res. 51(30): 10088-99.
Chopra, D., Kontopoulou, M., Vlassopoulos, D. and Hatzikiriakos, S.G. (2002). Effect of maleic anhydride content on the rheology and phase behavior of poly (styrene-co-maleic anhydride)/poly (methyl methacrylate) blends. Rheol. Acta. 41(1-2): 10-24.
Li, R., Yu, W. and Zhou, C. (2006). Phase behavior and its viscoelastic responses of poly (methyl methacrylate) and poly (styrene-co-maleic anhydride) blend systems. Polym. Bull. 56(4-5): 455-66.
Palierne, J. (1990). Linear rheology of viscoelastic emulsions with interfacial tension. Rheol. Acta. 29(3): 204.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Journal of Metals, Materials and Minerals
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.