A review on new cobalt-free cathode materials for reversible solid oxide fuel cells
DOI:
https://doi.org/10.55713/jmmm.v33i3.1654Keywords:
SOFC, Cathode, RSOFC, CobaltAbstract
The exponential growth in the requirement of fuel cells and batteries leads to increased demand for cobalt due to its common use in high-performance Li-ion batteries and high-temperature fuel cells/electrolyzers. This sharp increment in demand raises concern about the availability of limited reserves of cobalt which can impact the price of cobalt. Moreover, the geographic limitations of cobalt resources may endanger the whole supply chain. In addition to all those, huge moral issues of cobalt mining are also another problem. Hence, leading battery, fuel cells and electrolyzer manufacturers are looking for sustainable alternatives to reduce cobalt dependency. A more specific limitation is shown in Solid Oxide Fuel Cells (SOFCs) cathode materials that contain cobalt. Incompatibilities have already been observed between the cathode materials containing cobalt and the electrolytes in terms of the thermal expansion coefficient mismatch during the transition of the operating temperature from high to low. An advantage of low operating temperatures is the reduction of material costs compared to high temperature. Increasing the electrochemical performance of the cell and eliminating thermal expansion coefficient difference problems are in concert aimed at the development of cobalt-free cathode materials. Therefore, cobalt-free cathode materials are vital for the sustainability of SOFCs and green transition of the energy sector since they can be used as cathode and anode material in symmetrical SOFCs which is also known as reversible SOFC (RSOFC). In this review, we comprehensively summarize the recent advances of cobalt-free perovskite cathode materials for intermediate temperature RSOFCs.
Downloads
References
S. C. Singhal, and K. Kendall, Elsevier, High-temperature solid oxide fuel cells: Fundamentals, design and applications, Elsevier, 2003.
M. A. Rosen and S. Koohi-Fayegh, “The prospects for hydrogen as an energy carrier: An overview of hydrogen energy and hydrogen energy systems,” Energy, Ecology and Environment, vol. 1, no. 1, pp. 10-29, 2016.
J. Borrell, “A year of war and energy and climate crises,” European Union External Action Service., 2023.
BloombergNEF, “New Energy Outlook 2021”, Bloomberg New Energy Finance, London, 2021.
Hydrogen Council, “Hydrogen for Net Zero: A Critical Cost-Competitive Energy Vector”, 2021.
IEA, “Net Zero by 2050”, A Roadmap for the global energy sector, International Energy Agency, Paris, 2021.
RENA, “World energy transitions outlook”, IRENA, Abu Dhabi, 2021.
F. Labs, “Hydrogen market report July 2022”, Fark Labs Website, 2022.
B. C. Steele, “Material science and engineering: the enabling technology for the commercialisation of fuel cell systems”, Journal of Materials Science, vol. 36, pp. 1053-1068, 2001.
A. Kirubakaran, S. Jain, and R. K. Nema, “A review on fuel cell technologies and power electronic interface,” Renewable and Sustainable Energy Reviews, vol. 13, no. 9, pp. 2430-2440, 2009.
Grand View Research Inc., “Solid oxide fuel cell market size worth $4.0 billion by 2028”, Bloomberg Website, 2022.
Grand View Research Inc., “Global solid oxide fuel cell market size report, 2030”, Grand View Research Website, 2020.
V. Dusastre, and J. A. Kilner, “Optimisation of composite cathodes for intermediate temperature SOFC applications,” Solid State Ionics, vol. 126, no. 1-2, pp. 163-174, 1999.
N. Oishi, A. Atkinson, N. P. Brandon, J. A.Kilner, and B. C. H. Steele, B. C. H., “Fabrication of an anode‐supported gadolinium‐doped ceria solid oxide fuel cell and its operation at 550℃,” Journal of the American Ceramic Society, vol. 88, no. 6, pp. 1394-1396, 2005.
R. Doshi, V. L. Richards, J. D. Carter, X. Wang and M. Krumpelt, “Development of solid‐oxide fuel cells that operate at 500℃,” Journal of the Electrochemical Society, vol. 146, no.4, p. 1273, 1999.
N. Q. Minh, and M. B. Mogensen, “Reversible solid oxide fuel cell technology for green fuel and power production,” The Electrochemical Society Interface, vol .22, no. 4, pp. 55, 2013.
M. Zhang, Z. Du, Y. Zhang, and H. Zhao, “Progress of perovskites as electrodes for symmetrical solid oxide fuel cells,” ACS Applied Energy Materials, vol. 5, no. 11, pp. 13081-13095, 2022.
K. K. Hansen, K. V. Hansen, and M. Mogensen, “High-performance Fe–Co-based SOFC cathodes,” Journal of Solid State Electrochemistry, vol. 14, no. 11, pp. 2107-2112, 2010.
H. Ebrahimifar, and M. Zandrahimi, “Oxidation and electrical behavior of a ferritic stainless steel with a Mn–Co-based coating for SOFC interconnect applications,” Oxidation of Metals, vol. 84, no. 3-4, pp. 329-344, 2015.
J. H. Kim, S. Baek, C. Lee, K. Park, and J. Bae, “Performance analysis of cobalt-based cathode materials for solid oxide fuel cell”, Solid State Ionics, vol. 179, no. 27-32, pp. 1490-1496, 2008.
L. W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin, and S. R. Sehlin, “Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2 Co1−yFeyO3.”, Solid State Ionics, vol. 76, no. 3-4, pp. 259-271, 1995.
L. W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin, and S.R. Sehlin, “Structure and electrical properties of La1− x SrxCo1− yFeyO3 Part 2. The system La1− xSrxCo0.2Fe0.8O3.,” Solid State Ionics, vol. 76, no. 3-4, pp. 273-283, 1995.
B. Molero-Sánchez, P. Addo, A. Buyukaksoy, S. Paulson and V. Birss, “Electrochemistry of La0.3Sr0.7Fe0.7Cr0.3O3− δ as an oxygen and fuel electrode for RSOFCs,” Faraday Discussions, vol. 182, pp. 159-175, 2015.
M. B. Mogensen, M. Chen, H. L. Frandsen, C. Graves, J. B. Hansen, K. V. Hansen, and X. Sun, “Reversible solid-oxide cells for clean and sustainable energy,” Clean Energy, vol. 3, no. 3, pp. 175-201, 2019.
N. A. Baharuddin, A. Muchtar, and M.R. Somalu, “Short review on cobalt-free cathodes for solid oxide fuel cells”, International Journal of Hydrogen Energy, vol. 42, no. 14, pp. 9149-9155, 2017.
S. S. Hashim, F. Liang, W. Zhou, and J. Sunarso, “Cobalt‐free perovskite cathodes for solid oxide fuel cells,” Chemical Electrochemistry, vol. 6, no. 14, pp. 3549-3569, 2019.
Basic Research Option, “Web of Science” Website, 2023.
C. Sındıraç, S. Çakırlar, A. Büyükaksoy, and S. Akkurt, “Lowering the sintering temperature of solid oxide fuel cell electrolytes by infiltration,” Journal of the European Ceramic Society, vol. 39, no. 2-3, pp. 409-417, 2019.
C. Sındıraç, A. Büyükaksoy, and S. Akkurt, “Electrical properties of gadolinia doped ceria electrolytes fabricated by infiltration aided sintering,” Solid State Ionics, vol. 340, 2019.
C. Sındıraç, A. Ahsen, O. Ozturk, S. Akkurt, V. I. Birss, and A. Buyukaksoy, “Fabrication of LSCF and LSCF-GDC nano-composite thin films using polymeric precursors”, Ionics (Kiel)., vol. 26, no. 2, pp. 913-925, 2020.
C.Sındıraç,and S.Akkurt, “Microstructural investigation of the effect of electrospraying parameters on LSCF films”, International Journal of Hydrogen Energy, vol. 45, no. 60, pp. 35139-35148, 2020.
C. Sındıraç, and S. Akkurt, “Formation of La1−xSrxCo1−yFeyO3−δ cathode materials from precursor salts by heating in contact with CGO electrolyte,” International Journal of Hydrogen Energy, vol. 41, no. 40, pp. 18157-18165, 2016.
B. Wei, Z. Lü, X. Huang, M. Liu, N. Li, and W. Su, “Synthesis, electrical and electrochemical properties of Ba0.5Sr0.5Zn0.2Fe0.8O3−δ perovskite oxide for IT-SOFC cathode,” Journal of Power Sources, vol. 176, no. 1, pp. 1-8, 2008.
J. Xiao, Q. Xu, D.P. Huang, M. Chen, K. Zhao, and B. H. Kim, “Evaluation of La0.3Ca0.7Fe1− yCryO3−δ (y=0.1–0.3) cathodes for intermediate temperature solid oxide fuel cells,” Materials Research Bulletin, vol. 90, pp. 104-110, 2017.
Q. Zhou, C. Yuan, D. Han, T. Luo, J. Li, and Z. Zhan, “Evaluation of LaSr2Fe2CrO9-δ as a potential electrode for symmetrical solid oxide fuel cells,” Electrochimica Acta, vol. 133, pp. 453-458, 2014.
M. Chen, S. Paulson, V. Thangadurai, and V. Birss, “Sr-rich chromium ferrites as symmetrical solid oxide fuel cell electrodes,” Journal of Power Sources, vol. 236, pp. 68-79, 2013.
P. K. Addo, B. Molero-Sanchez, A. Buyukaksoy, S. Paulson, and V. Birss, “Sulfur tolerance of La0.3M0.7Fe0.7Cr0.3O3-δ (M=Sr,Ca) solid oxide fuel cell anodes,” ECS Transactions, vol. 66, no. 2, pp. 219, 2015.
B. Molero-Sanchez, J. Prado-Gonjal, D. Avila-Brande, M. Chen, E. Moran, and V. Birss, “High performance La0.3Ca0.7Cr0.3Fe0.7O3− δ air electrode for reversible solid oxide fuel cell applications,” International Journal of Hydrogen Energy, vol. 40, no. 4, pp. 1902-1910, 2015.
P. K. Addo, B. Molero‐Sanchez, M. Chen, S. Paulson, and V. Birss, “CO/CO2 study of high performance La0.3Sr0.7Fe0.7Cr0.3O3–δ reversible SOFC electrodes,” Fuel cells, vol. 15, no. 5, pp. 689-696, 2015.
B. Molero-Sánchez, P.K. Addo, A. Buyukaksoy, and V. Birss, “Performance enhancement of La0.3Ca0.7Fe0.7Cr0.3O3-δ air electrodes by infiltration methods,” Journal of The Electro-chemical Society, vol. 164, no. 10, 2017.
B. Molero-Sánchez, P. K. Addo, A. Buyukaksoy, and V. Birss, “GDC-infiltrated La0.3Ca0.7Fe0.7Cr0. 3O3-δ symmetrical oxygen electrodes for reversible SOFCs,” ECS Transactions, vol. 66, no. 2, pp. 185, 2015.
B. Molero-Sánchez, J. Prado-Gonjal, D. Ávila-Brande, V. Birss, and E. Morán, “Microwave-assisted synthesis and characterization of new cathodic material for solid oxide fuel cells: La0.3Ca0.7Fe0.7Cr0. 3O3-δ.,” Ceramics International, vol. 41, no. 7, pp. 8411-8416, 2015.
G. Bamana, J.D. Miller, S. L. Young, and J. B. Dunn, “Addressing the social life cycle inventory analysis data gap: Insights from a case study of cobalt mining in the Democratic Republic of the Congo”, One Earth, vol. 4, no. 12, pp. 1704-1714, 2021.
C. Banza Lubaba Nkulu, L. Casas, V. Haufroid, T. De Putter, N. D. Saenen, T. Kayembe-Kitenge, and B. Nemery, “Sustainability of artisanal mining of cobalt in DR Congo,” Nature sustainability, vol. 1, no. 9, pp. 495-504, 2018.
D. R. Wilburn, “Cobalt mineral exploration and supply from 1995 through 2013,” US Department of the Interior, US Geological Survey, 2012.
K. B. Shedd, E. A. McCullough, and D. I. Bleiwas, “Global trends affecting the supply security of cobalt”, Minerals Engineering International, vol. 69, no. 12, pp. 37-42, 2017.
N. Muralidharan, E. C. Self, J. Nanda, and I. Belharouak, “Next-generation cobalt-free cathodes–a prospective solution to the battery industry’s cobalt problem,” Advanced Energy Materials, pp. 33-53, 2022.
N. Muralidharan, E. C. Self, J. Nanda, and I. Belharouak, next-generation cobalt-free cathodes–a prospective solution to the battery industry’s cobalt problem, transition metal oxides for electrochemical energy storage,” Advanced Energy Materials, vol. 12, no. 9, 2022.
N. Tsurukawa, S. Prakash, and A. Manhart, “Social impacts of artisanal cobalt mining in Katanga, Democratic Republic of Congo,” Öko-Institut eV, Freiburg, 2011.
V. F. Kozokaro, P. K. Addo, H. M. Ansari, V. Birss, and M. C. Toroker, “Optimal oxygen vacancy concentration for CO2 reduction in LSFCr perovskite: A combined density functional theory and thermogravimetric analysis measurement study”, The Journal of Physical Chemistry C, vol. 124, no. 50, pp. 27453-27466, 2020.
P. Addo, S. Mulmi, B. Molero-Sánchez, P. Keyvanfar, V. Thangadurai, and V. Birss, “Performance enhancement of La0.3Sr0.7Fe0.7Cr0.3O3 (LSFCr) electrodes in CO2/CO atmosphere,” Electrochemical Society Meeting Abstracts, vol. 230, no. 40, pp. 3041-3041, 2016.
A. El-Himri, D. Marrero-López, J. C. Ruiz-Morales, J. Peña-Martínez, and P. Núñez, “Structural and electrochemical characterisation of Pr0.7Ca0.3Cr1−yMnyO3−δ as symmetrical solid oxide fuel cell electrodes,” Journal of Power Sources, vol. 188, no. 1, pp. 230-237, 2009.
S. Akkurt, C. Sındıraç, T. Ö. Egesoy, G. Atıcı, E. Erişman, E. Erğen, and A. Büyükaksoy, “Effects of electrospraying parameters on deposition of La0.3Sr0.7Fe0.7Cr0.3O3-δ cathode layer on GDC,” International Journal of Applied Ceramic Technology, 2022.
X. Tong, Y. Xu, Đ. Tripković, P. V. Hendriksen, W.-R. Kiebach, and M. Chen, “Promotion of oxygen reduction and evolution by applying a nanoengineered hybrid catalyst on cobalt free electrodes for solid oxide cells,” Journal of Materials Chemistry A, vol. 8, no. 18, pp. 9039-9048, 2020.
H. Tong, M. Fu, Y. Yang, F. Chen, and Z. Tao, “A novel self‐assembled cobalt‐free perovskite composite cathode with triple‐conduction for intermediate proton‐conducting solid oxide fuel cells,” Advanced Functional Materials, vol. 32, no. 48, p. 2209695, 2022.
L. R. Tarutina, G. K. Vdovin, J. G. Lyagaeva, and D. A. Medvedev, “Comprehensive analysis of oxygen transport properties of a BaFe0.7Zr0.2Y0.1O3-δ-based mixed Ionic-electronic conductor,” Journal of Membrane Science, vol. 624, p. 119125, 2021.
Y.-D. Kim, J.-Y. Yang, M. Saqib, K. Park, J.-seop Shin, M. Jo, K. M. Park, H.-T. Lim, S.-J. Song, and J.-Y. Park, “Cobalt-free perovskite Ba1-xNdxFeO3-δ air electrode materials for reversible solid oxide cells,” Ceramics International, vol. 47, no. 6, pp. 7985–7993, 2021.
J. Peña-Martínez, D. Marrero-López, D. Pérez-Coll, J. C. Ruiz-Morales, and P. Núñez, “Performance of XSCOF (x=Ba, La and Sm) and LSCrX′ (X′=Mn, Fe and Al) perovskite-structure materials on LSGM electrolyte for it-SOFC,” Electrochimica Acta, vol. 52, no. 9, pp. 2950-2958, 2007.
J. Zamudio-García, L. dos Santos-Gómez, J. M. Porras-Vázquez, E. R. Losilla, and D. Marrero-López, “Symmetrical solid oxide fuel cells based on titanate nanocomposite electrodes,” Journal of the European Ceramic Society, vol. 43, no. 4, pp. 1548-1558, 2023.
Z. Shao, and S. M. Haile, “A high-performance cathode for the next generation of solid-oxide fuel cells,” Materials for Sustainable Energy, pp. 255-258, 2010.
W. Zhou, Z. Shao, R. Ran, P. Zeng, H. Gu, W. Jin, and N. Xu, “Ba0.5Sr0.5Co0.8Fe0.2O3−δ+LaCoO3 composite cathode for Sm0.2Ce0.8O1.9-electrolyte based intermediate-temperature solid-oxide fuel cells,” Journal of Power Sources, vol. 168, no. 2, pp. 330-337, 2007.
D. Chen, C. Huang, R. Ran, H. J. Park, C. Kwak, and Z. Shao, “New Ba0.5Sr0.5Co0.8Fe0.2O3−δ+Co3O4 composite electrode for it-SOFCS with improved electrical conductivity and catalytic activity,” Electrochemistry Communications, vol. 13, no. 2, pp. 197-199, 2011.
S. O. Lee, D. Lee, I. Jung, D. Kim, S.-H. Hyun, J. Kim, and J. Moon, “Ceria interlayer-free Ba0.5Sr0.5Co0.8Fe0.2O3-δ –Sc0.1Zr0.9O1.95 composite cathode on zirconia based electrolyte for intermediate temperature solid oxide fuel cells,” International Journal of Hydrogen Energy, vol. 38, no. 22, pp. 9320-9329, 2013.
Y. Zhu, Z.-G. Chen, W. Zhou, S. Jiang, J. Zou, and Z. Shao, “An A-site-deficient perovskite offers high activity and stability for low-temperature solid-oxide fuel cells,” Chemical Sustainable Chemistry, vol. 6, no. 12, pp. 2249-2254, 2013.
B. Molero-Sánchez, P. Addo, A. Buyukaksoy, and V. Birss, “Performance enhancement of La0.3Ca0.7Fe0.7Cr0.3O3-δ Air electrodes by infiltration methods,” Journal of The Electrochemical Society, vol. 164, no. 10, 2017.
B. Molero-Sánchez, P. Addo, A. Buyukaksoy, S. Paulson, and V. Birss, “Electrochemistry of La0.3Sr0.7Fe0.7Cr0.3O3-δ as an oxygen and fuel electrode for RSOFCS,” Faraday Discussions, vol. 182, pp. 159-175, 2015.
B. Molero-Sánchez, P. K. Addo, A. Buyukaksoy, and V. Birss, “GDC-infiltrated La0.3Ca0.7Fe0.7Cr0.3O3-δ symmetrical oxygen electrodes for reversible SOFCS,” ECS Transactions, vol. 66, no. 2, pp. 185-193, 2015.
M. Chen, S. Paulson, V. Thangadurai, and V. Birss, “Sr-rich chromium ferrites as symmetrical solid oxide fuel cell electrodes,” Journal of Power Sources, vol. 236, pp. 68-79, 2013.
S. Lü, Y. Zhu, X. Fu, R. Huang, Y. Guo, W. Zhang, H. Li, L. Hou, and X. Meng, “A-site deficient Fe-based double perovskite oxides PrxBaFe2O5+δ as cathodes for solid oxide fuel cells,” Journal of Alloys and Compounds, vol. 911, p. 165002, 2022.
X. Fu, M. Liu, X. Meng, S. Lü, D. Wang, Y. Zhang, H. Liu, M. Song, Z. Li, and L. Wang, “Cobalt-free perovskite Ln0.5Sr0.5Fe0.8Cu0.2O3-δ (Ln = Pr, Nd, Sm, and Gd) as cathode for intermediate-temperature solid oxide fuel cell,” Ionics, vol. 26, no. 3, pp. 1285-1295, 2019.
U. F. Vogt, J. Sfeir, J. Richter, C. Soltmann, and P. Holtappels, “B-site substituted Lanthanum Strontium Ferrites as electrode materials for electrochemical applications,” Pure and Applied Chemistry, vol. 80, no. 11, pp. 2543-2552, 2008.
I. Susanto, D. M. Kamal, S. Ruswanto, R. Subarkah, F. Zainuri, S. Permana, J. W. Soedarsono, A. Subardi, and Y.-P. Fu, “Development of cobalt-free oxide (Sm0.5Sr0.5Fe0.8Cr0.2O3-δ) cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCS),” Eastern-European Journal of Enterprise Technologies, vol. 6, no. 5 (108), pp. 15-20, 2020.
J. Wang, M. Saccoccio, D. Chen, Y. Gao, C. Chen, and F. Ciucci, “The effect of A-site and B-site substitution on BaFeO3-δ: An investigation as a cathode material for intermediate-temperature solid oxide fuel cells,” Journal of Power Sources, vol. 297, pp. 511-518, 2015.
S. Wang, J. Xu, M. Wu, Z. Song, L. Wang, L. Zhang, J. Yang, W. Long, and L. Zhang, “Cobalt–free perovskite cathode BaFe0.9Nb0.1O3–δ for intermediate–temperature solid oxide fuel cell,” Journal of Alloys and Compounds, vol. 872, p. 159701, 2021.
B. S. Teketel, B. A. Beshiwork, D. Tian, S. Zhu, H. G. Desta, K. Kashif, Y. Chen, and B. Lin, “Promoted performance of layered perovskite PrBaFe2O5+δ cathode for protonic ceramic fuel cells by Zn doping,” Catalysts, vol. 12, no. 5, p. 488, 2022.
C. Yao, J. Yang, H. Zhang, S. Chen, J. Meng, and K. Cai, “Characterization of SrFe0.9-xCuxMo0.1O3-δ (x = 0, 0.1 and 0.2) as cathode for intermediate‐temperature solid oxide fuel cells,” International Journal of Energy Research, vol. 45, no. 4, pp. 5337-5346, 2020.
K. Li, A. Niemczyk, K. Świerczek, A. Stępień, Y. Naumovich, J. Dąbrowa, M. Zajusz, K. Zheng, and B. Dabrowski, “Co-free triple perovskite La1.5Ba1.5Cu3O7±δ as a promising air electrode material for solid oxide fuel cells,” Journal of Power Sources, vol. 532, p. 231371, 2022.
M. Wu, H. Cai, F. Jin, N. Sun, J. Xu, L. Zhang, X. Han, S. Wang, X. Su, W. Long, L. Wang, and L. Zhang, “Assessment of Cobalt–Free Ferrite–based perovskite Ln0.5Sr0.5Fe0.9Mo0.1O3–δ (Ln = lanthanide) as cathodes for IT-SOFCs,” Journal of the European Ceramic Society, vol. 41, no. 4, pp. 2682-2690, 2021.
M. Juhl, S. Primdahl, C. Manon, and M. Mogensen, “Performance/ structure correlation for composite SOFC cathodes,” Journal of Power Sources, vol. 61, no. 1-2, pp. 173-181, 1996.
1A. J. Abd Aziz, N. A. Baharuddin, M. R. Somalu, and A. Muchtar, “Review of composite cathodes for intermediate-temperature solid oxide fuel cell applications,” Ceramics International, vol. 46, no. 15, pp. 23314-23325, 2020.
A. J. Abd Aziz, N. A. Baharuddin, M. R. Somalu, and A. Muchtar, “Layering optimization of the SrFe0.9Ti0.1O3-δ -Ce0.8Sm0.2O1.9 composite cathode,” Molecules, vol. 27, no. 8, p. 2549, 2022.
H. G. Desta, D. Tian, Q. Yang, S. Zhu, K. Song, Y. Chen, and B. Lin, “Developing a new Sr and Co-free composite cathode of solid oxide fuel cells with high performance,” Chemical Physics Letters, vol. 806, p. 140037, 2022.
G. Xue, X. Zhang, L. Wang, Y. Hao, J. Li, H. Sun, X. Guo, and H. Zhang, “Synthesis and characterization of fibrous La0.8Sr0.2Fe1-xCuxO3-δ cathode for intermediate-temperature solid oxide fuel cells,” Ceramics International, vol. 48, no. 18, pp. 25940-25948, 2022.
X. Zhou, N. Hou, T. Gan, L. Fan, Y. Zhang, J. Li, G. Gao, Y. Zhao, and Y. Li, “Enhanced oxygen reduction reaction activity of BaCe0.2Fe0.8O3-δ cathode for Proton-conducting solid oxide fuel cells via Pr-doping,” Journal of Power Sources, vol. 495, p. 229776, 2021.
S. Liu, W. Menglin, L. Lu, J. Ni, C. Ni, and J. T. S. Irvine, “La0.5Ba0.5CuxFe1− xO3− δ as cathode for high-performance proton-conducting solid oxide fuel cell,” Separation and Purification Technology, vol. 297, p. 121485, 2022.
L. Zhang, Y. Yin, Y. Xu, S. Yu, and L. Bi, “Tailoring Sr2Fe1.5 -Mo0.5O6−δ with Sc as a new single-phase cathode for proton-conducting solid oxide fuel cells,” Science China Materials, vol. 65, no. 6, pp. 1485-1494, 2022.
J. Gao, Y. Liu, Y. Gao, M. Yuan, Z. Wang, Z. Lü, Q. Li, and B. Wei, “Cobalt-free fluorine doped Bi0.7Sr0.3FeO3-δ oxides for energetic cathodes of low-temperature solid oxide fuel cells,” Chemical Engineering Journal, vol. 452, p. 139584, 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Metals, Materials and Minerals
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.