Dispersion mechanism of nanoparticles and its role on mechanical, thermal and electrical properties of epoxy nanocomposites - A Review
DOI:
https://doi.org/10.55713/jmmm.v33i4.1774Keywords:
Epoxy, Dispersion, Nanocomposites, Multiwall carbon nanotubes, GrapheneAbstract
The combined effect of nano-reinforcements on the mechanical performance of nanocomposites, which are a novel class of epoxy matrix hybrid nanocomposites containing multiwall carbon nanotubes (MWCNT), graphene, and nanodiamonds (NDs), is drawing substantial attention from many research communities. The discussion concentrates on the dispersion techniques adopted for the preparation of epoxy composites containing different types of nanoparticles (3-D fillers, nanofibers, nanotubes, and plate-like fillers). This review paper covers the electrical, thermal, and mechanical properties of carbon nanotubes (CNTs), graphene, and nanodiamond-reinforced epoxy nanocomposites and correlates them with the topographical features, morphology, weight fraction, dispersion state, and surface functionalization of CNTs, graphene, and nanodiamond. This review paper also summarises recent developments in the dispersion method of different carbon nanoparticles in epoxy matrix.
Downloads
References
T. Subhani, M. Latif, I. Ahmad, S. A. Rakha, N. Ali, and A. A. Khurram, “Mechanical performance of epoxy matrix hybrid nanocomposites containing carbon nanotubes and nanodiamonds,” Materials and design, vol. 87, pp. 436-444. 2015.
I. Neitzel, “Mechanical properties of epoxy composites with high contents of nanodiamond,” Composite Science and Technology, vol. 71, pp. 710-716, 2011.
Y. A. Haleem, D. Liu, W. Chen, C. Wang, C. Hong, Z. He, J. Liu, P. Song, S. Yu, and L. Song, “Surface functionalization and structure characterizations of nanodiamond and its epoxy based nanocomposites,” Composites Part B., vol. 78, pp. 480-487, 2015.
E. P. Koumoulos, P. Jagadale, A. Lorenzi, A. Tagliaferro, and C. A. Charitidis, “Evaluation of surface properties of epoxy-nanodiamonds composites,” Composites Part B., vol. 80, pp. 27-36, 2015.
M. M. Shokrieh, M. Esmkhani, A. R. Haghighatkhah, and Z. Zhao, “Flexural fatigue behavior of synthesized graphene/ carbon-nanofiber/epoxy hybrid nanocomposites,” Materials and Design, vol. 62, pp. 401-408, 2014.
P. Li, Y. Zheng, M. Li, T. Sji, D. Li, and A. Zhang, “Eanced toughness and glass transition temperature of epoxy nano-composites filled with solvent-free liquid-like nanocrystal-functionalized graphene oxide,” Material and Design, vol. 89, pp. 653-659, 2016.
H. Yao, S. A. Hawkins, and H-J. Sue, “Preparation of epoxy nanocomposites containing well-dispersed graphene nanosheets,” Composite Science and Technology, vol. 146, pp. 161-168, 2017.
T. Y. Wang, and J. L. Tsai, “Investigating thermal conductivities of functionalized graphene and graphene/epoxy nanocomposites,” Composite Material Science, vol. 122, 272-280, 2016.
M. R. Ayatollahi, S. Shadlou, and M. M. Shokrieh, “Mixed mode brittle fracture in epoxy/multi-walled carbon nanotube nanocomposites,” Engineering Fracture Mechanics, vol. 78, pp. 2620-2632, 2011.
Y. Luo, Y. Zhao, J. Cai, Y. Duan, and S. Du, “Effect of amino-functionalization on the interfacial adhesion of multi-walled carbon nanotubes/epoxy nanocomposites,” Material and Design, vol. 33, pp. 405-412, 2012.
B. Singh, and A. Mohanty, “Compressive strength evaluation of nanodiamond/MWCNT/graphene reinforced novel hybrid polymer nano composites,” Journal of Surface Science and Technology, vol. 36, pp. 01-07, 2020.
J. Li, G. Zhang, Z. Ma. X. Fan, X. Fan, J. Qon, and X. Shi, “Morphologies and electromagnetic interference shielding performances of microcellular epoxy/multi-wall carbon nanotube nanocomposite foams” Composite Science and Technology, vol. 129, pp. 70-78, 2016.
Y. Luo, Y. Zhao, J. Cai, Y. Duan, and S. Du, “Effect of amino-functionalization on the interfacial adhesion of multi-walled carbon nanotubes/epoxy nanocomposites,” Material and Design, vol. 33, pp. 405-412, 2012.
S. P. Zahra, and G. Mousa, “Polymer grafted graphene oxide: For improved dispersion in epoxy resin and enhancement of mechanical properties of nanocomposite,” Composite Science and Technology, vol. 136, pp. 145-157, 2016.
M. Okamoto, S. Morita, H. Taguchi, Y. H. Kim, T. Kotaka, and H. Tateyame, “Synthesis and structure of smectic clay/poly (methyl methacrylate) and clay/polystyrene nanocomposites via in situ intercalative polymerization,” Polymer, vol. 41, pp. 3887-3890, 2000.
B. Fiedler, F. H. Gojny, and M. H. G. Wichmann, “Fundamental aspects of nano-reinforced composites,” Composite Science & Technology, vol. 66, p. 3115, 2006.
B, Singh, and A. Mohanty, “A comparative study of novel tribological response of hybrid epoxy composites reinforced by MWCNT/graphene/nanodiamond,” Journal of Surface Science and Technology, vol. 35, pp. 36-44, 2019.
C. Ma, W. Zhang, Y. Zhu, L. Ji, R. Zhang, K. Koratkar, and J. Liang, “Alignment and dispersion of functionalized carbon nanotubes in polymer composites induced by an electric field,” Carbon, vol. 46, no. 4, pp. 706-710, 2008.
V. Tucci, L. Guadagno, M. Raimondo, V. Vittoria, L. Vertuccio, C. Naddeo, S. Russo, B. D. Vivo, P. Lamberti, and G. Spinelli, “Development of epoxy mixtures for application in aeronautics and aerospace,” RSC Advance, vol. 4, no. 30, p. 15474, 2014.
P. Mohan, “A critical review: The modification, properties, and applications of epoxy” Resins Polymer and Plastic Technology in Engineering, vol. 52, pp. 107-125, 2013.
F. Inam, “Epoxy-the hub for the most versatile polymer with exceptional combination of superlative features,” Epoxy, vol. 1, pp. 1-2, 2014.
D. Ratna, “Modification of epoxy resins for improvement of adhesion: a critical review,” Journal of Adhesion Science Technology, vol. 17, pp. 1655-1668, 2003.
J. Hodgkin, G. Simon, and R. Varley, “Thermoplastic toughening of epoxy resins: A critical review,” Polymer Advance and Technology, vol. 9, 3-10, 1998.
S. V. Levchik, and E. D. Weil, “Thermal decomposition, combustion and flame-retardancy of epoxy resins - A Review of the Recent Literature,” Polymer International, vol. 53, pp. 1901-1929, 2004.
M. B. Jakubinek, B. Ashrafi, Y. Zhang, Y. M. Rubi, C. T. Kingston, A. Johnston, and B. Simard, “Single-walled carbon nanotube–epoxy composites for structural and conductive aerospace adhesives,” Composite Part B, vol. 69, pp. 87-93, 2015.
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666-669, 2004.
A. Y. W. Sham, and S. M. Notley, “A review of fundamental properties and applications of polymer-graphene hybrid materials,” Soft Material, vol. 9, pp. 6645, 2013.
G. Chaitanya, D. Nikhil, M. Akash, and S. Baljit, “Study on effect of heat treatment on mechanical properties of AA7075-MWCNT composite,” Material Today Proceeding, vol. 18, pp. 37-46, 2019.
Y. Zhu, S. Murali, W Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “graphene and graphene oxide: synthesis, properties, and applications,” Advance Materials, vol. 22, pp. 3906-3924, 2010.
S. Park, and R. S. Ruoff, “Chemical methods for the production of graphene’s,” Nanotechnology, vol. 4, pp. 217-224, 2009.
R. L. D. Whitby, “Chemical control of graphene architecture: tailoring shape and properties,”. ACS Nano, vol. 8, pp. 9733-9754, 2014.
J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,”. Nature Nanotechnology, vol. 3, pp. 206-209, 2008.
A. S. Mayorov, R. Gorbachev, S. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Letter, vol. 11, no. 6, pp. 2396-2399, 2011.
S. Stankovich, D. A. Dikin, and G. H. B. Dommett, “Graphene-based composite materials,” Nature, vol. 442, pp. 282, 2006.
A. M. Coclite, R. M. Howden, D. C. Borrelli, C. D. Petruczok, R. Yang, J. L. Yague, A. Ugur, N. Chen, S. Lee, W. J. Jo, A. Liu, X. Wang, and K. K. Gleason, “25th anniversary article: CVD polymers: a new paradigm for surface modification and device fabrication,” Advance Materials, vol. 25, pp. 5392-5423, 2013.
W. Hummersjr, and R. Offeman, “Preparation of graphitic oxide,” Journal of American Chemical Society, vol. 80, pp. 1339, 1958.
L. Staudenmaier, “Verfahren zur darstellung der graphitsäure,” Chemistry Europe, vol. 31, pp. 1481-1487, 1898.
B. Singh, and A. Mohanty, “Review paper on the effect of dispersion of particles and its effect on the properties of composite materials,” International Journal of Mechanical Engineering and Technology, vol. 8, pp. 140-149, 2017.
X. Hu, R. Qi, J. Zhu, J. Lu, Y. Luo, J. Jin, and P. Jiang, “Preparation and properties of dopamine reduced graphene oxide and its composites of epoxy,” Journal of Applied Polymer Science, vol. 131, p. 39754, 2014.
J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascon “Graphene oxide dispersions in organic solvents,” Letter, vol. 24, no. 19, pp. 10560-10564, 2008.
A. Zurutuza, and C. Marinelli, “Challenges and opportunities in graphene commercialization,” Nature Nanotechnology, vol. 9, pp. 730-734, 2014.
K. Hu, D. D. Kulkarni, I. Choi, and V. V. Tsukruk, “Graphene-polymer nanocomposites for structural and functional applications,” Progress in Polymer Science, vol. 39, pp. 1934-1972, 2014.
J. Kim, B-S. Yim, J-M. Kim, and J. Kim, “The effects of functionalized graphene nanosheets on the thermal and mechanical properties of epoxy composites for anisotropic conductive adhesives (ACAs),” Microelectronics Reliability, vol. 52, no. 3, pp. 595-602, 2012.
J. K. Lee, S. Song, and B. Kim, “Functionalized graphene sheets-epoxy based nanocomposite for cryotank composite application,” Polymer Composites, vol. 33, pp. 1263-1273, 2012.
B. Singh, and A. Mohanty, “Nano-mechanical approach of to study the behavior annealed nanodiamond reinforced epoxy nano-composites,” Polymer Composites, vol. 44, pp. 2997-3006, 2023.
J. Kim, H. Im, J-M. Kim, and J. Kim, “Thermal and electrical conductivity of Al (OH)3 covered graphene oxide nanosheet/ epoxy composites,” Journal of Material Science, vol. 47, no. 3, pp. 1418-1426, 2011.
E. Alishahi, S. Shadlou, S. D. Rad, and M. S. Ayatollahi, “Effects of carbon nanoreinforcements of different shapes on the mechanical properties of epoxy-based nanocomposites,” Materials Engineering, vol. 298, no. 6, pp. 670-678, 2013.
G. Lubineau, and A. Rahaman, “A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nano-reinforcements,” Carbon, vol. 50, 2377-2395, 2012.
I. Neitzel, V. Mochalin, J. A. Bares, R. W. Carpick, A. Erdemir, and Y. Gogotsi, “Tribological properties of nanodiamond-epoxy composites,” Tribology Letter, vol. 47, no. 2, pp. 195-202, 2012.
Z. Spitalsky, S. Georga, C. A. Krontiras, C. Galiotis, “Dielectric spectroscopy and tunability of multi-walled carbon nanotube/ epoxy resin composites,” Advanced Composites Letters, vol. 19, no. 6, pp. 179-189, 2010.
V. I. Raman, and G. R. Palmese, “Influence of tetrahydrofuran on epoxy-amine polymerization,” Macromolecules, vol. 38, pp. 6923-6930, 2005.
V. N. Mochalin, I. Neitzel, B. J. M. Etzold, A. M. Peterson, G. R. Palmese, and Y. Gogotsi, “Covalent incorporation of aminated nanodiamond into an epoxy polymer network,” ACS Nano, vol. 5, no. 9, pp. 7494-7502, 2011.
T. Jiang, T. Kuila, N. H. Kim, and J. H. Lee, “Effects of surface-modified silica nanoparticles attached graphene oxide using isocyanate-terminated flexible polymer chains on the mechanical properties of epoxy composites,” Journal of Materials Chemistry A, vol. 2, pp. 10557, 2014.
L. Z. Guan, Y.-J. Wan, L.-X. Gong, D. Yan, L,-C. Tang, L,-B. Wu, J,-X. Jiang, and G,-Q. Lai, “Toward effective and tunable interphases in graphene oxide/epoxy composites by grafting different chain lengths of polyetheramine onto graphene oxide,” Journal of Materials Chemistry A, vol. 2, pp. 15058, 2014.
I. Zaman, F. M. Nor, B. Manshoor, A. Khalid, and S. Araby, “Influence of interface on epoxy/clay nanocomposites: 1. morphology structure,” Journal of Materials Science, vol. 49, pp. 5856-5865, 2014.
Q, Meng, J. Jin, R. Wang, H. C. Kuan, J. Ma, N. Kawashima, A. Michelmore, S. Zhu, and C. H. Wang, “Processable 3-nm thick graphene platelets of high electrical conductivity and their epoxy composites,” Nanotechnology, vol. 25, pp. 125707, 2014.
Y.-J. Wan, L.-X. Gong, L.-C. Tang, L.-B. Wu, and J.-X. Jiang, “Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide,” Composite Part A, vol. 64, pp. 79-89, 2014.
T. K. Sharmila, A. B. Nair, B. T. Abraham, P. M. Sabura Beegum, and E. T. Thachil, “Microwave exfoliated reduced graphene oxide epoxy nanocomposites for high performance applications,” Polymer, vol. 55, no. 16, pp. 3614-3627, 2014.
Y.-J. Wan, L.-C. Tang, L.-X. Gong, D. Yan, Y.-B. Li, L.-B. Wu, J.-X. Jiang, and G.-Q. Lai, “Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties,” Carbon, vol. 69, pp. 467-480, 2014.
T. Liu, Z. Zhao, W. W. Tjiu, J. Lv, and C. Wei, “Preparation and characterization of epoxy nanocomposites containing surface-modified graphene oxide,” Journal of Applied Polymer Science, vol. 131, no. 9, p. 40236, 2014.
Y. Zhang, Y. Wang, J. Yu, L. Chen, J. Zhu, and Z. Hu, “Tuning the interface of graphene platelets/epoxy composites by the covalent grafting of polybenzimidazole,” Polymer, 55, 4990-5000, 2014.
G. Yu, and P. Wu, “Effect of chemically modified graphene oxide on the phase separation behaviour and properties of an epoxy/polyetherimide binary system,” Polymer Chemistry, vol. 5, 96, 2014.
C. E. Corcione, F. Freuli, and A. Maffezzoli, “The Aspect ratio of epoxy matrix nanocomposites reinforced with graphene stacks,” Polymer Engineering Science, vol. 53, pp. 531-539, 2013.
Z. Li, R. J. Young, R. Wang, F. Yang, L. Hao, W. Jiao, and W. Liu, “The role of functional groups on graphene oxide in epoxy nanocomposites,” Polymer, vol. 54, pp. 5821-5829, 2013.
A. S. Wajid, T. Ahmed, S. Das, F. Irin, A. F. Jankowski, and M. J. Green, “High-performance pristine graphene/epoxy composites with enhanced mechanical and electrical properties,” Macromolecule Materials and Engineering, vol. 298, pp. 339-347, 2013.
H. Feng, X. Wang, and D. Wu, “Fabrication of spirocyclic phosphazene epoxy-based nanocomposites with graphene via exfoliation of graphite platelets and thermal curing for enhancement of mechanical and conductive properties,” Industrial and Engineering Chemistry Research, vol. 52, pp. 0160-10171, 2013.
X. Wang, J. Jin, and M. Song, “An investigation of the mechanism of graphene toughening epoxy,” Carbon, vol. 65, pp. 324-333, 2013.
L. C. Tang, Y. J. Wan, and Y. Dong, “Tunable mechanical, electrical, and thermal properties of polymer nanocomposites through GMA bridging at interface,” Carbon, vol. 60, pp. 16-27, 2013.
H. Yao, S. A. Hawkins, and H.-J. Sue, “Preparation of epoxy nanocomposites containing well-dispersed graphene nanosheets,” Composite Science and Technology, vol. 146, pp. 161-168, 2017.
W. Guo, B. Yu, Y. Yuan, L. Song, and Y. Hu, In situ preparation of reduced graphene oxide/DOPO-based phosphonamidate hybrids towards high-performance epoxy nanocomposites,” Composites Part B, vol. 123, pp. 154-164, 2017.
W.-S. Kang, K. Y. Rhee, and S.-J. Park, “Influence of surface energetics of graphene oxide on fracture toughness of epoxy nanocomposites,” Composites Part B, vol. 114, pp. 175-183, 2017.
M. R. Zakaria, M. H. Abdul Kudus, H. Md. Akil, and M. Z. M. Thirmizir, “Comparative study of graphene nanoparticle and multiwall carbon nanotube filled epoxy nanocomposites based on mechanical, thermal and dielectric properties,” Composites Part B, vol. 119, pp. 57-66, 2017.
P. Li, Y. Zheng, M. Li, T. Shi, D. Li, and A. Zhang, “Enhanced toughness and glass transition temperature of epoxy nano-composites filled with solvent-free liquid-like nanocrystal-functionalized graphene oxide,” Materials and Design, vol. 89, pp. 653-659, 2016.
S. P. Zahra, and G. Mousa, “Polymer grafted graphene oxide: For improved dispersion in epoxy resin and enhancement of mechanical properties of nanocomposite,” Composite Science and Technology, vol. 136, pp. 145-157, 2016.
B. Singh, and A. Mohanty, “Study of the mechanical, dielectric, and thermal properties of annealed modified nanodiamond/epoxy composites.” Materials Research Express, vol. 6, p. 125612, 2019.
M. R. Zakaria, Md. A. Hazizan, M. H. A. Kudus and Md. S. S. Saleh, “Enhancement of tensile and thermal properties of epoxy nanocomposites through chemical hybridization of carbon nanotubes and alumina,” Composites Part A, vol. 66, pp. 109-116, 2014.
C. Jaemin, J. G. Hoon, J. K. Park, J. C. Kim, H. J. Ryu, and S. H. Hong, “Improvement of modulus, strength and fracture toughness of CNT/Epoxy nanocomposites through the functionalization of carbon nanotubes,” Composites Part B, vol. 129, pp. 169-179, 2017.
J. Cha, S. Jin, J. H. Shim, C. S. Park, H. J. Ryu, and S. H. Hong, “Functionalization of carbon nanotubes for fabrication of CNT/ epoxy nanocomposites,” Materials and Design, vol. 95, pp. 1-8, 2016.
B. S. Hadavand, K. M. Javid, and M. Gharagozlou, “Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite,” Materials and Design, vol. 50, pp. 62-67, 2013.
Philip, D. Bradford, X. Wang, H. Zhao, J. P. Maria, Q. Jia, and Y. T. Zhu, Composite Science and Technology, vol. 70, pp. 1980-1985, 2010.
X. Chen, J. Wang, M. Lin, W. Zhong, T. Feng, X. Chen, J. Chen, and F. Xue, “Mechanical and thermal properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes,” Material Science Engineering A, vol. 492, pp. 236-242, 2008.
H. Florian, I. Gojny, M. Wichmann, B. Fiedler, and K. Schulte, “Influences of carbon nanofillers on mechanical performance of epoxy resin polymer,” Composites Science and Technology, vol. 65, pp. 2300-2313, 2005.
B. Singh, and A. Mohanty, “Study of water absorption properties of annealed nanodiamond/epoxy nanocomposites,” Journal of Surface Science and Technology, vol. 37, pp. 15-21, 2021.
H. G. Chae, M. L. Minus, and S. Kumar, “Oriented and exfoliated single wall carbon nanotubes in polyacrylonitrile,” Polymer, vol. 47, pp. 3494-3504, 2006.
P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, “Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite,” Composites Science, vol. 265, pp. 1212-1214, 1994.
B. Singh, and A. Mohanty, “Influence of nanodiamonds on the mechanical properties of glass fiber-carbon fiber-reinforced polymer nanocomposites,” Journal of Materials Engineering and performance, vol. 31, pp. 3847-3858, 2022.
F. H. Gojny, M. H. G. Wichmann, B. Fiedler, and K. Schulte, “Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites - A comparative study,” Composites Science and Technology, vol. 65, pp. 2300-2313, 2005.
B. Singh, and A. Mohanty, “Nano-mechanical approach of to study the behavior annealed nanodiamond reinforced epoxy nanocomposites,” Polymer Composite, vol. 44, pp. 1-10, 2023.
E. W. Wong, P. E. Sheehan, and C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science, vol. 277, pp. 1971-1975, 1997.
S. Roy, K. Mitra, C. Desai, R. Petrova, and S. Mitra, “Detonation nanodiamonds and carbon nanotubes as reinforcements in epoxy composites - A Comparative Study,” Journal of Nano-technology in Engineering and Medicine, vol. 4, pp. 01-1008, 2013.
I. Neitzel, V. N. Mochalin, J. Niu, J. Cuadra, A. Kontsos, G. R. Palmese, and Y. Gogotsi, “Maximizing Young's modulus of aminated nanodiamond-epoxy composites measured in compression,” Polymer, vol. 53, pp. 5965-5971, 2012.
M. R. Ayatollahi, S. Shadlou, and M. M. Shokrieh, “Mixed mode brittle fracture in epoxy/multi-walled carbon nanotube nanocomposites,” Engineering Fracture Mechanic, vol. 78, pp. 2620-2632, 2011.
W. S. Kang, Y. R. Kyong, and S. J. Park, “Influence of surface energetics of graphene oxide on fracture toughness of epoxy nanocomposites,” Composites Part B, vol. 114, pp. 175-183, 2017.
T. Liu, Z. Zhao, W. W. Tjiu, J. Lv, and C. Wei, “Preparation and characterization of epoxy nanocomposites containing surface-modified graphene oxide,” Journal of Applied Polymer Science, vol. 131, pp. 40236, 2014.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Metals, Materials and Minerals
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.