A contribution to the exploration of the chemical durability, thermal stability, and structural ability of glasses from the Fe\(_{2}\)O\(_{3}\)-K\(_{2}\)O-MoO\(_{3}\)-P\(_{2}\)O\(_{5}\) quaternary system
DOI:
https://doi.org/10.55713/jmmm.v34i1.1787Keywords:
Phosphate glasses, Iron oxide, IR et Raman, Mössbauer spectroscopy, Chemical durabilityAbstract
The relationships between the properties and structure of xFe2O3-(40-x)K2O-10MoO3-50P2O5 glasses have been reported in this paper. Homogeneous glasses are formed for different Fe2O3 contents. The density and molar volume evolution of these glasses shows that Fe2O3 acts as a glass former and strengthens the structural bonds of the glass. Experimental 57Fe Mössbauer spectroscopy graphs suggest the existence of divalent Iron (FeII) and trivalent Iron (FeIII). The boost in chemical durability agrees with the growth in glass transition temperature due to more powerful bonding in the structural network. P-O-Fe bonds replace P-O-P bonds when Fe2O3 is present in the phosphate network.
Downloads
References
G. S. Frankel, J. D. Vienna, J. Lian, J. R. Scully, S. Gin, J. V. Ryan, J. Wang, S. H. Kim, W. Windl, and J. Du, “A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals,” Npj Materials Degradation, vol. 2, p. 15, 2018.
Sk. Mahamuda, F. Syed, Ch. B. Annapurna Devi, K. Swapna, M. V. V. K. S. Prasad, M. Venkateswarlu, and A. S. Rao, “Spectral characterization of Dy3+ ions doped phosphate glasses for yellow laser applications,” Non-Crystalline Solids, vol. 555, p. 120538, 2021.
A. Gharbi, S. Ayadi, N. Jouini, F. Schoenstein, H. Oudadess, H. El Feki, and W. Cheikhrouhou-Koubaa, “Original implementation of low-temperature SPS for bioactive glass used as a bone biomaterial,” Mechanical Behavior of Biomedical Materials, vol. 126, p. 104988, 2022.
D. E. Day, Z. Wu, C. S. Ray, and P. Hrma, “Chemically durable iron phosphate glass wasteforms,” Non-Crystalline Solids, vol. 241, pp. 1-12, 1998.
A. Faivre, F. Despetis, L. Duffours, and P. Colombel, “Effect of CaO and Al2O3 addition on the properties of K2O–Na2O–P2O5 glass system,” International Journal of Applied Glass Science, vol. 10, pp. 162-171, 2019.
D. S. Brauer, N. Karpukhina, R. V. Law, and R. G. Hill, “Effect of TiO2 addition on structure, solubility and crystallisation of phosphate invert glasses for biomedical applications,” Non-Crystalline Solids, vol. 356, pp. 2626-2633, 2010.
Q. Yin, S. Kang, X. Wang, S. Li, D. He, and L. Hu, “Effect of PbO on the spectral and thermo-optical properties of Nd3+ -doped phosphate laser glass,” Optical Materials, vol. 66, pp. 23-28, 2017.
T. Ishiyama, S. Suzuki, J. Nishii, T. Yamashita, H. Kawazoe, and T. Omata, “Proton conducting tungsten phosphate glass and its application in intermediate temperature fuel cells,” Solid State Ionics, vol. 262, pp. 856-859, 2014.
B. C. Sales, and L. A. Boatner, “Lead-Iron phosphate glass: A stable storage medium for high-level nuclear waste,” Science, vol. 226, pp. 45-48, 1984.
S. Kim, K. Han, S. Kim, L. Kadathala, J. Kim, and J. Choi, “Strengthening thermal stability in V2O5-ZnO-BaO-B2O3-M(PO3)n Glass System (M = Al, Mg) for laser sealing applications,” Applied Sciences, vol. 11, p. 4603, 2021.
N. Kiwsakunkran, W. Chaiphaksa, N. Chanthima, H. J. Kim, S. Kothan, A. Prasatkhetragarn, and J. Kaewkhao, “Fabrication of K2O–Al2O3–Gd2O3–P2O5 glasses for photonic and scintillation materials applications,” Radiation Physics and Chemistry, vol. 188, p. 109639, 2021.
H. Takebe, M. Fujisawa, Y. Maeda, and A. Saitoh, “Effect of molybdenum oxide addition on the durability and structure of iron phosphate glasses,” Ceramic Society of Japan, vol. 129, pp. 105-110, 2021.
S. Punj, J. Singh, and K. Singh, “Ceramic biomaterials: Properties, state of the art and future prospectives,” Ceramics International, vol. 47, pp. 28059-28074, 2021.
C. José Filho, S. C. Zilio, D. N. Messias, V. Pilla, A. C. A. Silva, N. O. Dantas, and A. A. Andrade, “Effects of aluminum substitution by potassium in the P2O5–Al2O3–Na2O–K2O phosphate glasses,” Alloys and Compounds, vol. 815, 2020.
A. Moguš-Milanković, A. Šantić, M. Karabulut, and D. E. Day, “Study of electrical properties of MoO3–Fe2O3–P2O5 and SrO–Fe2O3–P2O5 glasses by impedance spectroscopy. II,” Non-Crystalline Solids, vol. 330, pp. 128-141, 2003.
A. Moguš-Milanković, A. Šantić, A. Gajović, and D. E. Day, “Spectroscopic investigation of MoO3-Fe2O3-P2O5 and SrO-Fe2O3-P2O5 glasses. Part I,” Non-Crystalline Solids, vol. 325, pp. 76-84, 2003.
I. Ahmed, C. A. Collins, M. P. Lewis, I. Olsen, and J. C. Knowles, “Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering,” Biomaterials, vol. 25, pp. 3223-3232, 2004.
L. Zhang, M. E. Schlesinger, and R. K. Brow, “Phase equilibria in the Fe2O3-P2O5 system,” American Ceramic Society, vol. 94, pp. 1605-1610, 2011.
Y. M. Moustafa, K. El-Egili, H. Doweidar, and I. Abbas, “Structure and electric conduction of Fe2O3-P2O5 glasses,” Physica B Condens Matter, vol. 353, pp. 82-91, 2004.
X. Li, A. Lu, and H. Yang, “Structure of ZnO-Fe2O3-P2O5 glasses probed by Raman and IR spectroscopy,” Non-Crystalline Solids, vol. 389, pp. 21-27, 2014.
A. J. Parsons and C. D. Rudd, “Glass forming region and physical properties in the system P2O5-Na2O-Fe2O3,” Non-Crystalline Solids, vol. 354, pp. 4661-4667, 2008.
P. Bergo, W. M. Pontuschka, and J. M. Prison, “Dielectric properties of P2O5-Na2O-Li2O glasses containing WO3, CoO or Fe2O3,” Solid State Communications, vol. 141, pp. 545-547, 2007.
X. Li, Z. Xiao, M. Luo, X. Dong, T. Du, and Y. Wang, “Low melting glasses in ZnO-Fe2O3-P2O5 system with high chemical durability and thermal stability for sealing or waste immobilization,” Non-Crystalline Solids, vol. 469, pp. 62-69, 2017.
S. V. Stefanovsky, O. I. Stefanovskaya, S. E. Vinokurov, S. S. Danilov, and B. F. Myasoedov, “Phase composition, structure, and hydrolytic durability of glasses in the Na2O-Al2O3-(Fe2O3)-P2O5 system at replacement of Al2O3 by Fe2O3,” Radiochemistry, vol. 57, pp. 348-355, 2015.
Y. M. Moustafa, and A. El-Adawy, “Structural and physical properties of iron oxychloride phosphate glasses,” Physica Status Solidi (a), vol. 179, pp. 83-93,2000.
K. Joseph, T. R. Ravindran, R. Sudha, and R. Asuvathraman, “BaO-Fe2O3-P2O5 glasses: Understanding the thermal stability,” Nuclear Materials, vol. 517, pp. 106-112, 2019.
S. T. Reis, M. Karabulut, and D. E. Day, “Chemical durability and structure of zinc–iron phosphate glasses,” Non-Crystalline Solids, vol. 292, pp. 150-157, 2001.
L. Ma, R. K. Brow, and A. Choudhury, “Structural study of Na2O-FeO-Fe2O3-P2O5 glasses by Raman and Mössbauer spectroscopy,” Non-Crystalline Solids, vol. 402, pp. 64-73, 2014.
S. T. Reis, D. L. A. Faria, J. R. Martinelli, W. M. Pontuschka, D. E. Day, and C. S. M. Partiti, “Structural features of lead iron phosphate glasses,” Non-Crystalline Solids, vol. 304, pp. 188-194, 2002.
L. Ma, R. K. Brow, L. Ghussn, and M. E. Schlesinger, “Thermal stability of Na2O-FeO-Fe2O3-P2O5 glasses,” Non-Crystalline Solids, vol. 409, pp. 131-138, 2015.
N. Beloued, R. Makhlouk, Y. Er-Rouissi, M. Taibi, M. Sajieddine, S. Aqdim, “Relationship between chemical durability, structure and the ionic-covalent character of Me-O-P bond (Me = Cr, Fe), in the vitreous part of the system 60P2O5-2Cr2O3-(38−x)Na2O-xFe2O3 (with 3 ≤ x ≤ 33 mol%),” Advances in Materials Physics and Chemistry, vol. 9, pp. 199-209, 2019.
A. Er-Rafai, M. El Moudane, Y. Alaoui, M. Laourayed, M. Taibi, I. Warad, A. Guenbour, A. Bellaouchou, and A. Zarrouk, “Effect of molybdenum oxide on structural characteristics, thermal properties, and chemical dissolution of (50-x)K2O-xMoO3-50P2O5 phosphate glasses,” Biointerface Research in Applied Chemistry, vol. 13, p. 294, 2023.
A. Er-Rafai, M. Laourayed, Y. Alaoui, M. El Moudane, N. Lazar, A. Benzaouak, and A. Bellaouchou, “The Effect of Li2O/K2O ratio on the electrical and dielectric properties of Li2O-K2O-MoO3-P2O5 glasses,” Biointerface Research in Applied Chemistry, vol. 13, 2023.
M. Jerroudi, L. Bih, M. Azrour, B. Manoun, I. Saadoune, and P. Lazor, “Investigation of novel low melting phosphate glasses inside the Na2O-K2O-ZnO-P2O5 system,” Inorganic and Organometallic Polymers and Material, vol. 30, pp. 532-542, 2020.
E. Mohaghegh, A. Nemati, B. Eftekhari Yekta, and S. Banijamali, “Effects of Fe2O3 content on ionic conductivity of Li2O-TiO2-P2O5 glasses and glass-ceramics,” Materials Chemistry and Physics, vol. 190, pp. 8-16, 2017.
H. Doweidar, Y. M. Moustafa, K. El-Egili, and I. Abbas, “Infrared spectra of Fe2O3-PbO-P2O5 glasses,” Vibrational Spectroscopy, vol. 37, pp. 91-96, 2005.
Y. Alaoui, M. Laourayed, A. Er-rafai, M. Hammi, M. El Moudane, M. Boudalia, Z. Sekkat, I. Warad, A. Guenbour, A. Bellaouchou, and A. Zarrouk, “Effect of alumina insertion on structural properties, thermal stability, and chemical durability of potassium calcium based-phosphate glasses,” Inorganic Chemistry Communications, vol. 142, p. 109632, 2022.
A. Majjane, D. Rair, A. Chahine, M. Et-tabirou, M. Ebn Touhami, and R. Touir, “Preparation and characterization of a new glass system inhibitor for mild steel corrosion in hydrochloric solution,” Corrosion Science, vol. 60, pp. 98-103, 2012.
J. A. Jiménez, and C. L. Crawford, “Raman and optical spectroscopy study of iron-bearing bio-relevant phosphate glasses: Assessment of γ-ray irradiation effects,” Chemical Physic, vol. 569, p. 111854, 2023.
N. Guesmia, M. Hamzaoui, L. Beghdadi, M. T. Soltani, and D. de Ligny, “Glass formation, physical and structural investigation studies of the (90-x) Sb2O3-10WO3-xNaPO3 glasses,” Materials Today Communications, vol. 30, p. 103226, 2022.
M. Boudalia, M. Laourayed, M. El Moudane, Z. Sekkat, O. S. Campos, A. Bellaouchou, A. Guenbour, A. J. Garcia, and H. M. A. Amin, “Phosphate glass doped with niobium and bismuth oxides as an eco-friendly corrosion protection matrix of iron steel in HCl medium: Experimental and theoretical insights,” Journal of Alloys and Compounds, vol. 938, p. 168570, 2023.
A. Šantić, A. Moguš-Milanković, K. Furić, V. Bermanec, C. W. Kim, and D. E. Day, “Structural properties of Cr2O3-Fe2O3-P2O5 glasses, Part I,” Non-Crystalline Solids, vol. 353, pp. 1070-1077, 2007.
G. L. Williams, “57Fe Mossbauer studies of phosphate-based glass systems,” Sheffield Hallam University, Sheffield, 1990.
A. Kaaouass, A. Ben Ali, H. Ait Ahsaine, G. Kaichouh, A. Zarrouk, and M. Saadi, “Photocatalytic properties and chemical durability of CaO-B2O3-V2O5 borovanadate glasses,” Catalysts, vol. 13, p. 512, 2023.
M. Jerroudi, L. Bih, E. Haily, S. Yousfi, L. Bejjit, M. Haddad, B. Manoun, and P. Lazor, “Optical and electrical properties of manganese doped-alkali metaphosphate glasses,” Materials Today: Proceedings, vol. 30, pp. 1052-1055, 2020.
F. Muñoz, J. Rocherullé, I. Ahmed, and L. Hu, “Phosphate glasses,” in Springer Handbooks, Springer, 2019, pp. 553-594.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Metals, Materials and Minerals
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.