Influence of Bi substitution on structural and optical properties of LaFeO\(_{3}\) perovskite

Authors

DOI:

https://doi.org/10.55713/jmmm.v34i4.1837

Keywords:

Band gap energy, Nanoparticle, photocatalytic, Sol-gel, Solar cell

Abstract

The sol-gel self-ignition method has successfully synthesized a series of homogenous perovskites La1-xBixFeO3 (x=0.0, 0.2, 0.4, 0.6, and 0.8) nanoparticles. Rietveld refinement results from XRD patterns revealed no secondary phases in pure and Bi-substituted LaFeO3 samples. The structural transition from orthorhombic at x = 0.0 until x=0.6 (space group Pbnm) to rhombohedral at x=0.8 (space group R3c) was observed. Lattice parameter values increase slightly with Bi concentration due to the substitution of Bi in the LaFeO3 structure. The average crystallite size D was found to vary between 19 nm and 50 nm. The combination of XRD and SEM demonstrated that the prepared Bi-doped LaFeO3 is a single-phase perovskite with a relatively homogeneous particle size distribution. SEM images revealed quasi-spherical particle shapes. FTIR spectra identify the metal oxide bending vibrations at about 536 cm‒1 and 717 cm‒1 attributed to Fe-O and La-O bonds, respectively. No significant effect of Bi substitution from 0% up to 60% on crystal volume was observed, as confirmed by FTIR spectroscopy, which showed no shift in La/Fe-O bending vibration modes with increasing Bi content. The obtained results indicated that the Eg values exhibited a monotone decrease with an increase in Bi ratio. The band gap values varied from 2.2 eV for pure LaFeO3 to 1.85, 1.76, 1.54 and 1.35 eV for the substitutions of 20%, 40%, 60% and 80% respectively. Hence, the sample La0.2Bi0.8FeO3 with the small band gap value can be used as a promising candidate in solar cell applications.

 

Downloads

Download data is not yet available.

References

L. J. Berchmans, V. Leena, K. Amalajyothi, S. Angappan, and A. Visuvasam, "Preparation of lanthanum ferrite substituted with Mg and Ca," Materials and Manufacturing Processes., vol. 24, no. 5, pp. 546-549, 2009. DOI: https://doi.org/10.1080/10426910902746739

N. Q. Minh, "Ceramic Fuel Cells," Journal of the American Ceramic Society, vol. 76, pp. 563-588, 1993. DOI: https://doi.org/10.1111/j.1151-2916.1993.tb03645.x

A. Delmaster, D. Mazza, S. Ronchetti, M. Vallino, R. Spinicci, P. Brovetto, and M. Salis, "Synthesis and characterization of non-stoichiometric LaFeO3 perovskite," Materials Science Engineering: B, vol. 79, pp. 140-145, 2001. DOI: https://doi.org/10.1016/S0921-5107(00)00570-5

S. L. Bai , X. X. Fu, J. Z. Wang, Q. H. Yang, Y. H. Sun, and S. L. Zeng, "Photocatalysis of LaFeO3 (in Chinese)," Chinese Journal of Applied Chemistry, vol. 17, no. 3, pp. 343-345, 2000.

P. Song, Q. Wang, Z. Zhang, and Z. Yang, "Synthesis and gas sensing properties of biomorphic LaFeO3 hollow fibers templated from cotton," Sensors and Actuators B: Chemical, vol. 147, no. 1, pp. 248-254, 2010. DOI: https://doi.org/10.1016/j.snb.2010.03.006

Y. Shimizu, M. Shimabukuro, H. Arai, and T. Seiyama, "Enhancement of humidity sensitivity for perovskite-type oxides having semiconductivity," Chemistry Letters, vol. 14, no. 7, pp. 917-920, 1985. DOI: https://doi.org/10.1246/cl.1985.917

G. Martinelli, M. C. Carotta, M. Ferrini, Y. Sadaoka, and E. Traversa, "Screen-printed perovskite-type thick films as gas sensors for environmental monitoring," Sensors and Actuators B: Chemical, vol. 55, no. 2-3, pp. 99-110, 1999. DOI: https://doi.org/10.1016/S0925-4005(99)00054-4

P. Wang, Y. He, Y. Mi, J. Zhu, F. Zhang, Y. Liu, Y. Yang, M. Chen, and D. Cao, "Enhanced photoelectrochemical performance of LaFeO3 photocathode with Au buffer layer," RSC Advances, vol. 9, no. 46, pp. 26780-26786, 2019. DOI: https://doi.org/10.1039/C9RA05521E

M. Khairy, A. H. Mahmoud, and K. M. S. Khalil, "Synthesis of highly crystalline LaFeO3 nanospheres for phenoxazinone synthase mimicking activity," RSC Advances, vol. 11, pp. 17746-17754, 2021. DOI: https://doi.org/10.1039/D1RA02295D

Q. Peng, J. Wang, Y. W. Wen, B. Shan, and R. Chen, "Surface modification of LaFeO3 by Co-Pi electrochemical deposition as an efficient photoanode under visible light," RSC Advances, vol. 6, pp. 26192-26198, 2016. DOI: https://doi.org/10.1039/C6RA01810F

X. T. Yin, H. Huang, J-Li. Xie, D. Dastan, J. Li, Y. Liu, X-M. Tan, X-C. Gao, W. A. Shah, and X. G. Ma, "High-performance visible-light active Sr-doped porous LaFeO3 semiconductor prepared via sol–gel method," Green Chemistry Letters and Reviews, vol. 15, no. 3, pp. 546-556, 2022. DOI: https://doi.org/10.1080/17518253.2022.2112093

S. D. Khairnar, and V. S. Shrivastava, "Facile synthesis of nickel oxide nanoparticles for the degradation of methylene blue and rhodamine B dye: A comparative study," Journal of Taibah University for Science, vol. 13, pp. 1108-1118, 2019. DOI: https://doi.org/10.1080/16583655.2019.1686248

V. A. Adole, T. B. Pawar, P. B. Koli, and B. S. Jagdale, "Exploration of catalytic performance of nano-La2O3 as an efficient catalyst for dihydropyrimidinone/thione synthesis and gas sensing," Journal of Nanostructure in Chemistry, vol. 9, pp. 61-76, 2019. DOI: https://doi.org/10.1007/s40097-019-0298-5

I. M. Peters, and T. Buonassisi, "Energy yield limits for single-junction solar cells," Joule, vol. 2, no. 6, pp. 1160-1170, 2018. DOI: https://doi.org/10.1016/j.joule.2018.03.009

F. Moradi, Z. Shariatinia, N. Safari, and E. Mohajerani, "Boosted performances of mesoscopic perovskite solar cells using LaFeO3 inorganic perovskite nanomaterial," Journal of Electroanalytical Chemistry, vol. 916, p. 116376, 2022. DOI: https://doi.org/10.1016/j.jelechem.2022.116376

L. John Berchmans, R. Sindhu, S. Angappan, and C. O. Augustin, "Effect of antimony substitution on structural and electrical properties of LaFeO3," Journal of Materials Processing Technology, vol. 207, no. 1-3, pp. 301-306, 2008. DOI: https://doi.org/10.1016/j.jmatprotec.2008.06.054

Q. Guo, X. Li, H. Wei, Y. Liu, L. Li, X. Yang, X. Zhang, H. Liu, and Z. Lu, "Sr, Fe Co-doped perovskite oxides with high performance for oxygen evolution reaction," Frontiers in Chemistry, vol. 7, p. 224, 2019. DOI: https://doi.org/10.3389/fchem.2019.00224

B. Irshad, H. Shahid, K. Wasi, and S. I. Patil, "Effect of Zn doping on structural, magnetic and dielectric properties of LaFeO3 synthesized through sol–gel auto-combustion process," Materials Research Bulletin, vol. 48, no. 11, pp. 4506-4512, 2013. DOI: https://doi.org/10.1016/j.materresbull.2013.07.028

S. Manzoor, and S. Husain, “Influence of Zn doping on structural, optical and dielectric properties of LaFeO3,” Materials Research Express, vol. 5, no. 5, p. 055009, 2018. DOI: https://doi.org/10.1088/2053-1591/aabf6c

I. N. Sora, F. Fontana, R. Passalacqua, C. Ampelli, S. Perathoner, G. Centi, F. Parrino, and L. Palmisano, "Photoelectrochemical properties of doped lanthanum orthoferrites," Electrochimica Acta, vol. 109, pp. 710-715, 2013. DOI: https://doi.org/10.1016/j.electacta.2013.07.132

Y. Fang, L. Mei, Y. Hu, L. Jinpei, H. Kangling, H. Yun, and L. Qing, "Magnetic and dielectric properties of Ca2+ doped Bi0.9La0.1FeO3 nanoparticles prepared by the sol-gel method," Indian Journal of Engineering and Materials Sciences, vol. 26, no. 1, pp. 36-42, 2019.

M. I. Díez-García, and R. Gómez, "Metal doping to enhance the photoelectrochemical behavior of LaFeO3 photocathodes," ChemSusChem, vol. 10, no. 11, pp. 2457-2463, 2017. DOI: https://doi.org/10.1002/cssc.201700166

L. Qingsheng, Z. You, S. J. Zeng, and H. Guo, "Infrared properties of Mg-doped LaFeO3 prepared by sol-gel method," Journal of Sol-Gel Science and Technology, vol. 80, pp. 860-866, 2016. DOI: https://doi.org/10.1007/s10971-016-4141-x

X. Liu, B. Cheng, J. Hu, H. Qin, and M. Jiang, “Preparation, structure, resistance and methane-gas sensing properties of nominal La1−xMgxFeO3,” Sensors and Actuators B: Chemical, vol. 133, pp. 340-344, 2008. DOI: https://doi.org/10.1016/j.snb.2008.02.033

D. Triyono, U. Hanifah, and H. Laysandra, "Structural and optical properties of Mg-substituted LaFeO3 nanoparticles prepared by a sol-gel method," Results in Physics, vol. 16, p. 102995, 2020. DOI: https://doi.org/10.1016/j.rinp.2020.102995

S. N. Fitria, and D. Triyono, "Structural analysis and dielectric properties of La1-xBixFeO3 perovskite materials at room temperature," Journal of Physics: Conference Series, vol. 1153, p. 012071, 2019. DOI: https://doi.org/10.1088/1742-6596/1153/1/012071

Q. Yao, C. Tian, Z. Lua, J. Wang, H. Zhou, and G. Rao, "Anti-ferromagnetic-ferromagnetic transition in Bi-doped LaFeO3 nanocrystalline ceramics," Ceramics International, vol. 46, pp. 20472-20476, 2020. DOI: https://doi.org/10.1016/j.ceramint.2020.05.146

L. Wanjun, Y. Fujun, X. Peng, J. Yunjie, L. Jiawei, Y. Xinsui, C. Xiaoqin, "Effect of Bi-doping on the electrocatalytic properties of LaFeO3 powders prepared by sol–gel method", Journal of Materials Science, vol. 54, no. 10, pp.7460-7468, 2019. DOI: https://doi.org/10.1007/s10853-019-03443-6

M. A. Ahmed, A. A. Azab, and E. H. El-Khawas, "Structural, magnetic and electrical properties of Bi doped LaFeO3 nano-crystals, synthesized by auto-combustion method," Journal of Materials Science: Materials in Electronics, vol. 26, pp. 8765-8773, 2015. DOI: https://doi.org/10.1007/s10854-015-3556-4

B. D. Cullity, Elements of X-ray Diffraction, 2nd ed., Massachusetts: Addison-Wesley Publishing Company, Inc., 1978.

G. Will, Powder Diffraction: The Rietveld Method and the Two Stage Method to Determine and Refine Crystal Structures from Powder Diffraction Data, Berlin Heidelberg: Springer-Verlag, 2006.

L. Lutterotti, "Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction," Nuclear Instruments and Methods B, vol. 268, pp. 334-340, 2010. DOI: https://doi.org/10.1016/j.nimb.2009.09.053

B. H. Toby, "R factors in Rietveld analysis: How good is good enough?", Power Diffraction. vol. 21, no. 1, pp. 67-70, 2006. DOI: https://doi.org/10.1154/1.2179804

R. A. Young, The Rietveld Method; R. A., Young, Ed.; Oxford University Press, New York (US), pp. 1- 38, 1993. DOI: https://doi.org/10.1093/oso/9780198555773.003.0001

J. Shah, A. Shukla, M. Kar, G. Gupta, S. Jain, and R. K. Kotnala, "ZnO nanoflakes self-assembled from the water splitting process using a hydroelectric cell," Reaction Chemistry & Engineering, vol. 7, no. 8, pp. 1836-1846, 2022. DOI: https://doi.org/10.1039/D2RE00094F

R. D. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides," Acta Crystallographica Section A, vol. 32, pp. 751-767, 1976. DOI: https://doi.org/10.1107/S0567739476001551

P. Bindu, and S. Thomas, " Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis," Journal of Theoretical and Applied Physics, vol. 8, pp. 123-124, 2014. DOI: https://doi.org/10.1007/s40094-014-0141-9

V. Biju, S. Neena, V. Vrinda, and S. L. Salini, " Estimation of lattice strain in nanocrystalline silver from X-ray diffraction line broadening," Journal of Materials Science, vol. 43, pp. 1175-1179, 2008. DOI: https://doi.org/10.1007/s10853-007-2300-8

T. R. Jeena, A. M. E. Raj, and M. Bououdina, "Synthesis and photo-luminescent characteristics of Dy3+ doped Gd2O3 phosphors," Materials Research Express, vol. 4, p. 025019, 2017. DOI: https://doi.org/10.1088/2053-1591/aa5336

M. Čebela, B. Jankovic, R. Hercigonja, M. J. Lukic, Z. Dohcevic-Mitrovic, D. Milivojevic, and B. Matovic, "Comprehensive characterization of BiFeO3 powder synthesized by the hydro-thermal procedure," Processing and Application of Ceramics, vol. 10, no. 4, pp. 201-208, 2016. DOI: https://doi.org/10.2298/PAC1604201C

M. Ismael, and M. Wark, "Perovskite-type LaFeO3: Photo-electrochemical properties and photocatalytic degradation of organic pollutants under visible light irradiation," Catalysts, vol. 9, no. 4, p. 342 , 2019. DOI: https://doi.org/10.3390/catal9040342

P. Desai, and A. Athawale, "Microwave combustion synthesis of silver doped lanthanum ferrite magnetic nanoparticles", Defence Science Journal, vol. 63, no. 3, pp. 285-291, 2013. DOI: https://doi.org/10.14429/dsj.63.2387

J. I. Pankove, Optical Processes in Semiconductors, New Jersey: Prentice-Hall, Englewood Cliffs, 1971.

A. Yoshikawa, H. Matsunami, and Y. Nanishi, "Development and applications of wide bandgap semiconductors," in Wide Bandgap Semiconductors, K. Takahashi, A. Yoshikawa, and A. Sandhu, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1-24, 2007. DOI: https://doi.org/10.1007/978-3-540-47235-3_1

M. Sivakumar, A. Gedanken, W. Zhong, Y. H. Jiang, Y. W. Du, I. Brukental, D. Bhattacharya, Y. Yeshurun, and I. Nowik, "Sonochemical synthesis of nanocrystalline LaFeO3", Journal of Materials Chemistry, vol. 14, pp. 764-769, 2004. DOI: https://doi.org/10.1039/b310110j

M. Popa, J. Frantti, and M. Kakihana, "Lanthanum ferrite LaFeO3+d nanopowders obtained by the polymerizable complex method", Solid State Ionics, vol. 154, pp. 437-445, 2002. DOI: https://doi.org/10.1016/S0167-2738(02)00480-0

M. A. Matin, M. N. Hossain, M. M. Rhaman, F. A. Mozahid, Md. S. Ali, M. Hakim, and M. F. Islam, "Dielectric and optical properties of Ni-doped LaFeO3 nanoparticles," SN Applied Sciences, vol. 1, p. 14792, 2019. DOI: https://doi.org/10.1007/s42452-019-1453-9

F. J. Brieler, M. Froba, L. Chen, P. J. Klar, W. Heimbrodt, H-A. Krug von Nidda, A. Loidl, "Ordered arrays of II/VI diluted magnetic semiconductor quantum wires: Formation within mesoporous MCM-41 silica," Chemistry European Journal, vol. 8, no. 1, pp. 185-194, 2002. DOI: https://doi.org/10.1002/1521-3765(20020104)8:1<185::AID-CHEM185>3.0.CO;2-L

R. Dhinesh Kumar, R. Thangappan, and R. Jayavel, "Synthesis and characterization of LaFeO3/TiO2 nanocomposites for visible light photocatalytic activity," Journal of Physics and Chemistry of Solids, vol. 101, pp. 25-33, 2017. DOI: https://doi.org/10.1016/j.jpcs.2016.10.005

Downloads

Published

2024-11-26

How to Cite

[1]
M. S. MAHBOUB, “Influence of Bi substitution on structural and optical properties of LaFeO\(_{3}\) perovskite”, J Met Mater Miner, vol. 34, no. 4, p. 1837, Nov. 2024.

Issue

Section

Original Research Articles