Versatile route for preparation of polydiacetylene/ZnO nanocomposites and their colorimetric response to pH and ethanol

Authors

  • Nopparat Rungruangviriya Faculty of Science, Chulalongkorn University
  • Nisanart Traiphol Research Unit of Advanced Ceramic and Polymeric Materials, National Center of Excellence for Petroleum, Petrochemical, and Advanced Materials, Chulalongkorn University

Keywords:

Polydiacetylene, Nanocomposites, Color transition, Conformation transition, Interfacial effect, pH sensor

Abstract

This contribution presents a simple method to prepare polydiacetylene(PDA)/ZnO nanocomposites, which can be utilized as active materials in sensing technology. The ZnO nanoparticles, which constitute of Zn-OH2 +, Zn-OH and Zn-O- groups at their surfaces, function as nano-substrates for self-assembling of diacetylene monomers, 10,12-pentacosadiynoic acid (PCDA), in aqueous medium. Photopolymerization of the assemblies yields poly(PCDA)/ZnO nanocomposites with core-shell structure. Strong interactions between the active groups at ZnO surface and carboxylic head groups of poly(PCDA) promote chain ordering and reduce segmental dynamics of poly(PCDA) in the nanocomposites. The existence of strong interfacial interaction drastically affects the colorimetric response behavior of the nanocomposites upon exposure to external stimuli. The poly(PCDA)/ZnO nanocomposites change color from blue to purple upon increasing pH to ~12.6 while the color transition from blue to red of pure poly(PCDA) vesicles takes place at pH~8. The addition of ethanol into aqueous suspension of pure poly(PCDA) vesicles causes color transition when the ethanol concentration is above ~45 %v/v. However, the addition of ethanol up to 90%v/v into aqueous suspension of the nanocomposites hardly affects their color.

Downloads

Download data is not yet available.

References

Ahn, D.J., Lee, S. & Kim, J.M. (2009). Rational design of conjugated polymer supramolecules with tunable colorimetric responses. Adv. Funct. Mater. 19(10) : 1483-1496.

Yoon, B., Lee, S. & Kim, J.M. (2009). Recent conceptual and technological advances in polydiacetylene-based supramolecular chemosensors. Chem. Soc. Rev. 38(7) : 1958-1968.

Carpick, R.W., Sasaki, D.Y., Marcus, M.S., Eriksson, M.A. & Burns, A.R. (2004). Polydiaceylene films: a review of recent investigations into chromogenic transitions and nanomechanical properties. J. Phys. Condens. Matter. 16(23) : R679-R697.

Reppy, M.A. & Pindzola, B.A. (2007). Biosensing with polydiacetylene materials : structures, optical properties and applications. Chem. Commun. (42) : 4317-4338.

Okada, S., Peng, S., Spevak, W. & Charych, D. (1998). Color and chromism of polydiacetylene vesicles. Acc. Chem. Res. 31(5) : 229-239.

Jelinek, R. & Kolusheva, S. (2004). Carbohydrate biosensors. Chem. Rev. 104(12) : 5987-6016.

Kew, S.J. & Hall, E.A.H. (2006). pH response of carboxy-terminated colorimetric polydiacetylene vesicles. Anal. Chem. 78(7) : 2231-2238.

Ma, G. & Cheng, Q. (2005). A nanoscale vesicular polydiacetylene sensor for organic amines by fluorescence recovery. Talanta. 67(13) : 514-519.

Kolusheva, S., Zadmard, R., Schrader, T. & Jelinek, R. (2006). Color fingerprinting of proteins by calixarenes embedded in lipid/polydiacetylene vesicles. J. Am. Chem. Soc. 128(41) : 13592-13598.

Kolusheva, S., Shahal, T. & Jelinek, R. (2000). Cation-selective color sensors composed of ionophore-phospholipid-polydiacetylene mixed vesicles. J. Am. Chem. Soc. 122(5) : 776-780.

Ma, G. & Cheng, Q. (2006). Manipulating FRET with polymeric vesicles : Development of a “mix-and-detect” type fluorescence sensor for bacterial toxin. Langmuir. 22(16) : 6743-6745.

Chen, X., Lee, J., Jou, M.J. & Kim, J.M. & Yoon, J. (2009). Colorimetric and fluorometric detection of cationic surfactants based on conjugated polydiacetylene supramolecules. Chem. Commun. 23: 3434-3436.

Chen, X., Kang, S., Kim, M.J., Kim, J., Kim, Y.S., Kim, H., Chi, B., Kim, S.J., Lee, J.Y. & Yoon, J. (2010). Thin-film formation of imidazoliumbased conjugated polydiacetylenes and their application for sensing anionic surfactants. Angew. Chem. Int. Ed. 49(8) : 1422-1425.

Gou, M.L., Guo, G., Zhang, J., Men, K., Song, J., Luo, F., Zhao, X., Qian, Z.Y. & Wei, Y.Q. (2010). Time-temperature chromatic sensor based on polydiacetylene (PDA) vesicle and amphiphilic copolymer. Sensor. Actuat. B: Chem. 150(1) : 406-411.

Lee, J., Kim, H.J. & Kim, J. (2008). Polydiacetylene liposome arrays for selective potassium detection. J. Am. Chem. Soc. 130(15) : 5010-5011.

Lee, J., Jun, H. & Kim, J. (2009). Polydiacetyleneliposome microarrays for selective and sensitive mereury(II) detection. Adv. Mater. 21(36) : 3674-3677.

Seo, D. & Kim, J. (2010). Effect of the molecular size of analytes on polydiacetylene chromism Adv. Funct. Mater. 20(9) : 1397-1403.

Wacharasindhu, S., Montha, S., Boonyiseng, J., Potisatityuenyong, A., Phollookin, C., Tumcharern, G. & Sukwattanasinitt, M. (2010). Tuning of thermochromic properties of polydiacetylene toward universal temperature sensing materials through amido hydrogen bonding. Macromolecules 43(2) : 716-724.

Wu, S., Niu, L., Shen, J., Zhang, Q. & Bubeck, C. (2009). Aggregation-induced reversible thermochromism of novel azo chromophorefunctionalized polydiacetylene cylindrical micelles. Macromolecules 42(1) : 362-367.

Huang, X., Jiang, S. & Liu, M. (2005). Metal ion modulated organization and function of the langmuir−blodgett films of amphiphilic diacetylene : photopolymerization, thermochromism, and supramolecular chirality J. Phys. Chem. B 109(1) : 114-119.

Ahn, D.J. & Kim, J.M. (2008). Fluorogenic polydiacetylene supramolecules : immobilization, micropatterning, and application to labelfree chemosensors. Acc. Chem. Res. 41(7) : 805-816.

Park, H. Lee, J.S. Choi, H. Anh, D.J. & Kim, J.M. (2007). Rational design of supramolecular conjugated polymers displaying unusual colorimetric stability upon thermal stress. Adv. Funct. Mater. 17 : 3447-3455.

Lee, S. & Kim, J.M. (2007).α-Cyclodextrin: a molecule for testing colorimetric reversibility of polydiacetylene supramolecules. Macromolecules. 40(26) : 9201-9204.

Lee, S.B., Koepsel, R.R. & Russell, A.J. (2005). Surface dispersion and hardening of selfassembled deacetylene nanotubes. Nano Lett. 5(11) : 2202-2206.

Peng, H., Tang, J., Pang, J., Chen, D., Yang, L., Ashbaugh, H.S., Brinker, C.J., Yang, Z. & Lu, Y. (2005). Polydiacetylene/silica nanocomposites with tunable mesostructure and thermochromatism from diacetylenic assembling molecules. J. Am. Chem. Soc. 127(37) : 12782-12783.

Kim, J.M., Lee, J.S., Choi, H., Sohn, D. & Ahn, D. (2005) Rational design and in-situ FTIR analyses of colorimetrically reversible polydiacetylene supramolecules. Macromolecules 38(22) : 9366-9376.

Yuan, Z., Lee, C.W. & Lee, S.H. (2006). Reversible thermochromism in self-layered hydrogenbondedpolydiacetylene assembly. Polymer 47(9) : 29702975.

Ferguson, C.G., James, R.D., Bigman, C.S., Shepard, D.A., Abdiche, Y., Katsamba, P.S., Myszka, D.G. & Prestwich, G.D. (2005). Phosphoinositide-containing polymerized liposomes: stable membrane-mimetic vesicles for protein-lipid binding analysis. Bioconjug. Chem. 16(6) : 1475-1483.

Yuan, Z., Lee, C.W. & Lee, S.H. (2004). Reversible thermochromism in hydrogen-bonded plymers containing polydiacetylenes. Angew. Chem. Int. Ed. 43(32) : 4197-4200.

Gu, Y., Cao, W., Zhu, L., Chen, D. & Jiang, M. (2008). Polymer mortar assisted self-assembly of nanocrystalline polydiacetylene bricks showing reversible thermochromism. Macromolecules 41(7) : 2299-2303.

Wu, S., Shi, F., Zhang, Q. & Bubeck, C. (2009). Stable hydrogen-bonding complexes of poly (4-vinylpyridine) and polydiacetylenes for photolithography and sensing. Macromolecules 42(12) : 4110-4117.

Itoh, T., Shlchi, T., Yui, T., Takahashi, H., Inui, Y. & Takagi, K. (2005). Reversible color changes in lamella hybrids of poly (diacetylenecarboxylates) incorporated in layered double hydroxide nanosheets. J. Phys. Chem. B 109(8) : 3199-1302.

Su, Y.L. (2006). Preparation of polydiacetylene/silica nanocomposite for use as a chemosensor. React. Funct. Polym. 66(9) : 967-973.

Nagao, M. (1971). Physisorption of water on zinc oxide surface. J. Phys. Chem. 75(25) : 3822-3828.

Liufu, S.C., Xiao, H.N. & Li, Y.P. (2006). Adsorptin of MA-Na copolymer at the ZnO-aqueous solution interface materials chemistry and physics. Mater. Chem. Phys. 95(1) : 177-121.

Liufu, S.C., Xiao, H.N. & Li, Y.P. (2004). Investigation of PEG adsorption on the surface of zinc oxide nanoparticle. Powder Technol. 145(1) : 20-24.

Traiphol, N., Rungruangviriya, N., Potai, R. and Traiphol, R. submitted for publication.

Downloads

Published

2017-04-15

How to Cite

[1]
N. Rungruangviriya and N. Traiphol, “Versatile route for preparation of polydiacetylene/ZnO nanocomposites and their colorimetric response to pH and ethanol”, J Met Mater Miner, vol. 20, no. 2, Apr. 2017.

Issue

Section

Original Research Articles

Most read articles by the same author(s)