Recent advances in synthesis and bio-applications of natural stabilizers for metal nanoparticles
DOI:
https://doi.org/10.55713/jmmm.v34i4.2145Keywords:
Metal nanoparticles, Natural Stabilizer, Cellulose, Alginate, Starch, ChitosanAbstract
Due to their exceptional physicochemical properties, the synthesis and application of metal nano-particles gained significant traction and a grip in industries and scientific fields or regions. However, the thermodynamic instability of metal nanoparticles poses or leads to challenges in their controlled synthesis and stabilization. To address this stability and the immobilization strategies, natural polymers such as cellulose, starch, alginate, chitosan, and hyaluronic acid have been explored for their non-toxic, biodegradable, and environmentally friendly characteristics. Recent advances in nanotechnology have led to an increased focus on these natural polymer’s utilization as effective stabilizers for diverse metal nanoparticles. This review comprehensively examines recent advances in utilizing these natural polymers as stabilizers for metal nanoparticles. Synthesis methods, stabilization mechanisms, and applications spanning catalysis, sensing, drug delivery, and biomedical imaging are discussed. Challenges such as scalability and reproducibility are addressed, alongside future directions for research and development. In this review, our goal is to encourage continued research and creativity in sustainable nanomaterials. By doing so, we hope to advance the development of adaptable and environmentally friendly nanoparticles that find applications across various industries.
Downloads
References
, "Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review," Environmental Chemistry Letters, vol. 22, no. 2. pp. 841-887, 2024. DOI: https://doi.org/10.1007/s10311-023-01682-3
D. Maity, S. R. Sahoo, and S. Saha, “Synthesis and characterization of nanomaterials for electrochemical sensors,” ACS Symposium Series, vol. 1437, pp. 193-222, 2023. DOI: https://doi.org/10.1021/bk-2023-1437.ch009
F. W. Zhang, P. D. Trackey, V. Verma, G. T. Mandes, R. L. Calabro, A. W. Presot, C. K. Tsay, T. J. Lawton, A. S. Zammit, E. M. Tang, A. Q. Nguyen, K. V. Munz, E. A. Nagelli, S. F. Bartolucci, J. A. Maurer, and F. J. Burpo, “Cellulose nanofiber–alginate biotemplated cobalt composite multifunctional aerogels for energy storage electrodes,” Gels, vol. 9, no. 11, pp. 1-23, 2023. DOI: https://doi.org/10.3390/gels9110893
H. M. Abuzeid, C. M. Julien, L. Zhu, and A. M. Hashem, “Green synthesis of nanoparticles and their energy storage, environmental, and biomedical applications,” Crystals, vol. 13, no. 11, 2023. DOI: https://doi.org/10.3390/cryst13111576
S. kazemi, A. Hosseingholian, S. D. Gohari, F. Feirahi, F. Moammeri, G. Mesbahian, Z. S. Moghaddam, and Q. Ren, “Recent advances in green synthesized nanoparticles: from production to application,” Materials Today Sustainability, vol. 24, p. 100500, 2023. DOI: https://doi.org/10.1016/j.mtsust.2023.100500
H. T. Phan, and A. J. Haes, “What does nanoparticle stability mean?,” Jorunal of Physical Chemistry C Nanomater Interfaces, vol. 123, no. 27, pp. 16495-16507, 2019. DOI: https://doi.org/10.1021/acs.jpcc.9b00913
M. C. Crisan, M. Teodora, and M. Lucian, “Copper nanoparticles: Synthesis and characterization, physiology, toxicity and antimicrobial applications,” Applied Sciences, vol. 12, no.1, pp. 141-160, 2022. DOI: https://doi.org/10.3390/app12010141
A. Sarkar, E. Guibal, F. Quignard, and A. K. SenGupta, “Polymer-supported metals and metal oxide nanoparticles: Synthesis, characterization, and applications,” Journal of Nanoparticle Research, vol. 14, no. 2, pp. 715-738, 2012. DOI: https://doi.org/10.1007/s11051-011-0715-2
T. Kamal, I. Ahmad, S. B. Khan, and A. M. Asiri, “Bacterial cellulose as support for biopolymer stabilized catalytic cobalt nanoparticles,” International Journal of Biological Macro-molecules, vol. 135, pp. 1162-1170, 2019. DOI: https://doi.org/10.1016/j.ijbiomac.2019.05.057
M. A. Shah, B. M. Pirzada, G. Price, A. L. Shibiru, and A. Qurashi, “Applications of nanotechnology in smart textile industry: A critical review,” Journal of Advanced Research, vol. 38, pp. 55-75, 2022. DOI: https://doi.org/10.1016/j.jare.2022.01.008
D. Maity, Md. M. R. Mondal, D. Mondal, B. Bhowmick, S. K. Neogi, A. Banerjee, S. Chattopadhyay, S. Bandyopadhyay, and D. Chattopadhyay, “Synthesis of HPMC stabilized nickel nanoparticles and investigation of their magnetic and catalytic properties,” Carbohydrate Polymers, vol. 98, no. 15, pp. 80-88, 2013. DOI: https://doi.org/10.1016/j.carbpol.2013.05.020
M. Rezayat, R. Blundell, J. E. Camp, D. A. Walsh, and W. Thielemans, “Green one-step synthesis of catalytically active palladium nanoparticles supported on cellulose nanocrystals,” ACS Sustainable Chemistry Engineering, vol. 2, no. 5, pp. 1241-1250, 2014. DOI: https://doi.org/10.1021/sc500079q
Y. Khan, H. Sadia, S. Z. A. Shah, M. N. Khan, A. A. Shah, N. Ullah, M. F. Ullah, H. Bibi, O. T. Bafakeeh, N. B. Khedher, S. M. Eldin, B. M. Fadhl, and M. I. Khan, “Classification, Synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: A Review,” Catalysts, vol. 12, no. 11, p. 1386, 2022. DOI: https://doi.org/10.3390/catal12111386
M. Madani, S. Hosny, D. Alshangiti, N. Nady, S. A. Alkhursani, H. Alkhaldi, S. A. Al-Gahtany, M. M. Ghobashy, and G. A. Gaber, “Green synthesis of nanoparticles for varied applications: Green renewable resources and energy-efficient synthetic routes,” Nanotechnology Reviews, vol. 11, no. 1, pp. 731-759, 2022. DOI: https://doi.org/10.1515/ntrev-2022-0034
A. Heuer-Jungemann, N. F. Torres, I. Bakaimi, M. Hamaly, A. Alkilany, I. Chakraborty, A. Masood, M. F. Casula, A. Kostopoulou, E. Oh, K. Susumu, M. H. Stewart, I. L. Medintz, E. Stratakis, W. J. Parak, and A. G. Kanaras, “The role of ligands in the chemical synthesis and applications of inorganic nano-particles,” Chemical Reviews, vol. 119, no. 8, pp. 4819-4880, 2019. DOI: https://doi.org/10.1021/acs.chemrev.8b00733
P. Trucillo, “Biomaterials for drug delivery and human applications,” Materials (Basel), vol. 17, no. 2, 2024. DOI: https://doi.org/10.3390/ma17020456
A. Hasan, and I. Rana, “A review on in SITU green synthesis of titanium dioxide nanoparticles and their photocatalytic activities,” Materials Today Proceedings, vol. 81, no. 2, pp. 916-918, 2021. DOI: https://doi.org/10.1016/j.matpr.2021.04.287
D. Khayatan, H. Tebyaniyan, A. Seifalian, K. Abbasi, and M. Alam, “Biocompatible and biomaterials application in drug delivery system in oral cavity,” Evidence-based Complement. and Alternative Medicine, vol. 2021, p. 9011226, 2021. DOI: https://doi.org/10.1155/2021/9011226
T. Malachowski, and A. Hassel, “Engineering nanoparticles to overcome immunological barriers for enhanced drug delivery,” Engineered Regeneratio, vol. 1, no. April, pp. 35-50, 2020. DOI: https://doi.org/10.1016/j.engreg.2020.06.001
D. Lee, D. Park, K. Shin, H. M. Seo, H. Lee, Y. Choi, and J. W. Kim, “ZnO nanoparticles-laden cellulose nanofibers-armored pickering emulsions with improved UV protection and water resistance,” Journal of Industrial and Engineering Chemistry, vol. 96, pp. 219-225, 2021. DOI: https://doi.org/10.1016/j.jiec.2021.01.018
D. M. Alshangiti, T. K. El-Damhougy, A. Zaher, M. Madani, and M. M. ghobashy, “Revolutionizing biomedicine: advancements, applications, and prospects of nanocomposite macromolecular carbohydrate-based hydrogel biomaterials: A review,” RSC Advances, vol. 13, no. 50, pp. 35251-35291, 2023. DOI: https://doi.org/10.1039/D3RA07391B
T. Miyazawa, M. Itaya, G. C. Burdeos, K. Nakagawa, and T. Miyazawa, “A critical review of the use of surfactant-coated nanoparticles in nanomedicine and food nanotechnology,” Internation.
M. F. Khan, and M. A. Khan, “Plant-derived metal nanoparticles (PDMNPs): Synthesis, characterization, and oxidative stress-mediated therapeutic actions,” Future Pharmacology, vol. 3, no. 1, pp. 252-295, 2023. DOI: https://doi.org/10.3390/futurepharmacol3010018
S. Rai, E. Acharya-Siwakoti, A. Kafle, H. P. Devkota, and A. Bhattarai, “Plant-derived saponins: A review of their surfactant properties and applications,” Sciences, vol. 3, no. 4, pp. 1-19, 2021. DOI: https://doi.org/10.3390/sci3040044
A. I. Barbosa, A. J. Coutinho, S. A. Costa Lima, and S. Reis, “Marine polysaccharides in pharmaceutical applications: Fucoidan and chitosan as key players in the drug delivery match field,” Marine Drugs, vol. 17, no. 12, 2019. DOI: https://doi.org/10.3390/md17120654
Y. Yuan, Q. Fan, X. Xu, O. Wang, L. Zhao, and L. Zhao, “Nanocarriers based on polysaccharides for improving the stability and bioavailability of Anthocyanins: A review,” Carbohydrate Polymer Technologies and Applications, vol. 6, no. July, p. 100346, 2023. DOI: https://doi.org/10.1016/j.carpta.2023.100346
M. J. Cardoso, R. R. Costa, and J. F. Mano, “Marine origin polysaccharides in drug delivery systems,” Marine Drugs, vol. 14, no. 2, pp. 1-27, 2016. DOI: https://doi.org/10.3390/md14020034
P. R. Chang, J. Yu, X. Ma, and D. P. Anderson, “Polysaccharides as stabilizers for the synthesis of magnetic nanoparticles,” Carbohydrate Polymers, vol. 83, no. 2, pp. 640-644, 2011. DOI: https://doi.org/10.1016/j.carbpol.2010.08.027
N. Srivastava, and A. R. Choudhury, “Microbial polysaccharide-based nanoformulations for nutraceutical delivery,” ACS Omega, vol. 7, no. 45, pp. 40724-40739, 2022. DOI: https://doi.org/10.1021/acsomega.2c06003
K. Ahmad, S. Khan, M. Afridi, A. Hassan, M. M. Shah, H. Rasheed, R. Ahmad, and H. Ifqir, “Marine macroalgae poly-saccharides-based nanomaterials: an overview with respect to nanoscience applications,” Beni-Suef University Journal Basic and Applied Sciences, vol. 11, no. 156, 2022.. DOI: https://doi.org/10.1186/s43088-022-00335-8
I. M. Yermak, V. N. Davydova, and A. V. Volod’ko, “Mucoadhesive marine polysaccharides,” Marine Drugs, vol. 20, no. 8, 2022. DOI: https://doi.org/10.3390/md20080522
M. Beaumont, R. Tran, G. Vera, D. Niedrist, A. Rousset, R. Pierre, V. P. Shastri, and A. Forget, “Hydrogel-forming algae polysaccharides: From seaweed to biomedical applications,” Biomacromolecules, vol. 22, no. 3, pp. 1027-1052, 2021. DOI: https://doi.org/10.1021/acs.biomac.0c01406
Y. E. Lee, H. Kim C. Seo, T. Park, K. B. Lee, S-Y. Yoo, S-C. Hong, J. T. Kim, and J. Lee, “Marine polysaccharides: therapeutic efficacy and biomedical applications,” Archives of Pharmacal Research, vol. 40, no. 9, pp. 1006-1020, 2017. DOI: https://doi.org/10.1007/s12272-017-0958-2
Y. Sun, X. Ma, and H. Hu, “Marine polysaccharides as a versatile biomass for the construction of nano drug delivery systems,” Marine Drugs, vol. 19, no. 6, pp. 1-15, 2021. DOI: https://doi.org/10.3390/md19060345
B. Jaya, B. Brajesh, F. Antonella, L. D. Giovanna, and K. Amit, “Biopolymer : A sustainable material for food and medical applications,” Polymers (Basel)., vol. 14, no. 983, pp. 1-22, 2022. DOI: https://doi.org/10.3390/polym14050983
T. O. Machado, J. Grabow, C. Sayer, P. H. H. de Araújo, M. L. Ehrenhard, and F. R. Wurm, “Biopolymer-based nanocarriers for sustained release of agrochemicals: A review on materials and social science perspectives for a sustainable future of agri- and horticulture,” Advances in Colloid and Interface Science, vol. 303, no. March, p. 102645, 2022 DOI: https://doi.org/10.1016/j.cis.2022.102645
S. O. Alaswad, A. S. Mahmoud, and P. Arunachalam, “Recent advances in biodegradable polymers and their biological applications: A brief review,” Polymers (Basel)., vol. 14, no. 22, 2022. DOI: https://doi.org/10.3390/polym14224924
K. Y. Perera, A. K. Jaiswal, and S. Jaiswal, “Biopolymer-based sustainable food packaging materials :,” Foods, pp. 1-59, 2023. DOI: https://doi.org/10.3390/foods12122422
T. Nazrun, M. K. Hassan, M. D. Hossain, B. Ahmed, M. R. Hasnat, and S. Saha, “Application of biopolymers as sustainable cladding materials: A Review,” Sustainability, vol. 16, no. 1, 2024. DOI: https://doi.org/10.3390/su16010027
S. J. Eichhorn, A. Etale, J. Wang, L. A. Berglund, Y. Li, Y. Cai, C. Chen, E. D. Cranston, M. A. Johns, Z. Fang, G. Li, L. Hu, M. Khandelwal, K.-Y. Lee, K. Oksman, S. Pinitsoontorn, F. Quero, A. Sebastian, M. M. Titirici, Z. Xu, S. Vignolini, and B. Frka-Petesic, “Current international research into cellulose as a functional nanomaterial for advanced applications,” Journal of Materials Science, vol. 57, no. 10, pp. 5697-5767, 2022. DOI: https://doi.org/10.1007/s10853-022-06903-8
R. M. Parker, B. Frka-Petesic, G. Guidetti, G. Kamita, G. Consani, C. Abell, and S. Vignolini, “Hierarchical self-assembly of cellulose nanocrystals in a confined geometry,” ACS Nano, vol. 10, no. 9, pp. 8443-8449, 2016. DOI: https://doi.org/10.1021/acsnano.6b03355
Y. Sun, Y. Liu, Z. Lou, K. Yang, D. Lv, J. Zhou, S. A. Baig, and X. Xu, “Enhanced performance for Hg(II) removal using biomaterial (CMC/gelatin/starch) stabilized FeS nanoparticles: Stabilization effects and removal mechanism,” Chemical Engineering Journal, vol. 344, pp. 616-624, 2018. DOI: https://doi.org/10.1016/j.cej.2018.03.126
M. Radetić, and D. Marković, “Nano-finishing of cellulose textile materials with copper and copper oxide nanoparticles,” Cellulose, vol. 26, no. 17, pp. 8971-8991, 2019. DOI: https://doi.org/10.1007/s10570-019-02714-4
B. Joseph, V. K. Sagarika, C. Sabu, N. Kalarikkal, and S. Thomas, “Cellulose nanocomposites: Fabrication and biomedical applications,” Journal of Bioresources and Bioproducts., vol. 5, no. 4, pp. 223-237, 2020. DOI: https://doi.org/10.1016/j.jobab.2020.10.001
M. T. Islam, N. Dominguez, Md. A. Ahsan, H. Dominguez-Cisneros, P. Zuniga, P. J. L. Alvarez, and J. C. Noveron, “Sodium rhodizonate induced formation of gold nanoparticles supported on cellulose fibers for catalytic reduction of 4-nitrophenol and organic dyes,” Journal of Environmental Chemical Engineering, vol. 5, no. 5, pp. 4185-4193, 2017. DOI: https://doi.org/10.1016/j.jece.2017.08.017
A. Anžlovar, and E. Žagar, “Cellulose structures as a support or template for inorganic nanostructures and their assemblies,” Nanomaterials, vol. 12, no. 11, 2022. DOI: https://doi.org/10.3390/nano12111837
X. An, Y. Long, and Y. Ni, “Cellulose nanocrystal/hexadecyl-trimethylammonium bromide/silver nanoparticle composite as a catalyst for reduction of 4-nitrophenol,” Carbohydrate Polymer, vol. 156, pp. 253-258, 2017. DOI: https://doi.org/10.1016/j.carbpol.2016.08.099
M. A. Kebede, T. Imae, Sabrina, C. M. Wu, and K. Bin Cheng, “Cellulose fibers functionalized by metal nanoparticles stabilized in dendrimer for formaldehyde decomposition and antimicrobial activity,” Chemical Engineering Journal, vol. 311, pp. 340-347, 2017. DOI: https://doi.org/10.1016/j.cej.2016.11.107
T. Kamal, I. Ahmad, S. B. Khan, M. Ul-Islam, and A. M. Asiri, “Microwave assisted synthesis and carboxymethyl cellulose stabilized copper nanoparticles on bacterial cellulose nanofibers support for pollutants degradation,” Journal of Polymers and the Environment, vol. 27, no. 12, pp. 2867-2877, 2019. DOI: https://doi.org/10.1007/s10924-019-01565-1
C. C. Carrion, M. Nasrollahzadeh, M. Sajjadi, B. Jaleh, G. J. Soufi, and S. Iravani, “Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities,” International Journal of Biological Macromolecules, vol. 178, pp. 193-228, 2021. DOI: https://doi.org/10.1016/j.ijbiomac.2021.02.123
H. N. Abdelhamid and A. P. Mathew, “Cellulose-Based Nanomaterials Advance Biomedicine: A Review,” Int. J. Mol. Sci., vol. 23, no. 10, 2022, doi: 10.3390/ijms23105405. DOI: https://doi.org/10.3390/ijms23105405
R. K. Mishra, A. Sabu, and S. K. Tiwari, “Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect,” Journal of Saudi Chemical Society, vol. 22, no. 8, pp. 949-978, 2018. DOI: https://doi.org/10.1016/j.jscs.2018.02.005
H. Seddiqi, E. Oliaei, H. Honarkar, J. Jin, L. C. Geonzon, R. G. Bacabac, and J. Klein-Nuleng, "Cellulose and its derivatives: towards biomedical applications, Cellulose, vol. 28, no. 4, pp. 1893-1931, 2021. DOI: https://doi.org/10.1007/s10570-020-03674-w
M. Zhang, F. He, D. Zhao, and X. Hao, “Transport of stabilized iron nanoparticles in porous media: Effects of surface and solution chemistry and role of adsorption,” Journal of Hazardous Materials, vol. 322, pp. 284-291, 2017. DOI: https://doi.org/10.1016/j.jhazmat.2015.12.071
J. Van Rie, and W. Thielemans, “Cellulose-gold nanoparticle hybrid materials,” Nanoscale, vol. 9, no. 25, pp. 8525-8554, 2017. DOI: https://doi.org/10.1039/C7NR00400A
N. Yılmaz Baran, T. Baran, and A. Menteş, “Production of novel palladium nanocatalyst stabilized with sustainable chitosan/ cellulose composite and its catalytic performance in Suzuki-Miyaura coupling reactions,” Carbohydrate Polymer, vol. 181, pp. 596-604, 2018. DOI: https://doi.org/10.1016/j.carbpol.2017.11.107
M. T. Islam, H. Jing, T. Yang, E. Zubia, A. G. Goos, R. A. Bernal, C. E. Botez, M. Narayan, C. K. Chan, and J. C. Noveron, “Fullerene stabilized gold nanoparticles supported on titanium dioxide for enhanced photocatalytic degradation of methyl orange and catalytic reduction of 4-nitrophenol,” Journal of Environmental Chemical Engineering, vol. 6, no. 4, pp. 3827-3836, 2018. DOI: https://doi.org/10.1016/j.jece.2018.05.032
F. He, D. Zhao, J. Liu, and C. B. Roberts, “Stabilization of Fe - Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater,” Industrial & Engineering Chemistry Research, vol. 46, no. 1, pp. 29-34, 2007. DOI: https://doi.org/10.1021/ie0610896
M. Wu, Z. Zhou, J. Yang, M. Zhang, F. Cai, and P. Lu, “ZnO nanoparticles stabilized oregano essential oil Pickering emulsion for functional cellulose nanofibrils packaging films with antimicrobial and antioxidant activity,” International Journal of Biological Macromolecules, vol. 190, no. July, pp. 433-440, 2021. DOI: https://doi.org/10.1016/j.ijbiomac.2021.08.210
P. J. Reynoso-García, M. Güizado-Rodríguez, V. Barba, G. Ramos-Ortiz, and H. Martínez-Gutiérrez, “Stabilization of silver nanoparticles with a dithiocarbamate ligand and formation of nanocomposites by combination with polythiophene derivative nanoparticles,” Advances in Condensed Matter Physics, vol. 2018, no. 1, p. 4376051, 2018. DOI: https://doi.org/10.1155/2018/4376051
S. A. Noorian, N. Hemmatinejad, and J. A. R. Navarro, "Ligand modified cellulose fabrics as support of zinc oxide nanoparticles for UV protection and antimicrobial activities," International Journal of Biological Macromolecules, vol. 154, no. 2, 2020. DOI: https://doi.org/10.1016/j.ijbiomac.2019.10.276
K. Ganguly, D. K. Dutta, S. D. Dutta, and K-T. Lim, “TEMPO-cellulose nanocrystal-capped gold nanoparticles for colorimetric detection of pathogenic DNA,” ACS Omega, vol. 6, no. 19, pp. 12424-12431, 2021. DOI: https://doi.org/10.1021/acsomega.1c00359
A. Salama, R. E. Abouzeid, M. E. Owda, I. Cruz-Maya, and V. Guarino, “Cellulose–silver composites materials: Preparation and applications,” Biomolecules, vol. 11, no. 11, pp. 1-29, 2021. DOI: https://doi.org/10.3390/biom11111684
Shahid-ul-Islam, S. Bairagi, and M. R. Kamali, “Review on green biomass-synthesized metallic nanoparticles and composites and their photocatalytic water purification applications: Progress and perspectives,” Chemical Engineering Journal Advances, vol. 14, no. January, p. 100460, 2023. DOI: https://doi.org/10.1016/j.ceja.2023.100460
E. J. Murphy, G. W. Fehrenbach, I. Z. Abidin, C. Buckley, T. Montgomery, R. Pogue, P. Murray, I. Major, and E. Rezoagli, “Polysaccharides—naturally occurring immune modulators,” Polymers (Basel)., vol. 15, no. 10, 2023.. DOI: https://doi.org/10.3390/polym15102373
T. T. V. Phan, D. T. Phan, X. T. Cao, T. C. Huynh, and J. Oh, “Roles of chitosan in green synthesis of metal nanoparticles for biomedical applications,” Nanomaterials, vol. 11, no. 2, pp. 1-15, 2021. DOI: https://doi.org/10.3390/nano11020273
G. Cárdenas-Triviño, C. Elgueta, L. Vergara, J. Ojeda, A. Valenzuela, and C. Cruzat, “Chitosan doped with nanoparticles of copper, nickel and cobalt,” International Journal of Biological Macromolecules, vol. 104, pp. 498-507, 2017. DOI: https://doi.org/10.1016/j.ijbiomac.2017.06.040
N. T-P. Nguyen, L. V-H. Nguyen, N. T. Thanh, V. V. Toi, T. N. Quyen, P. A. Tran, H-M. D. Wang, and T-H. Nguyen, "Stabilization of silver nanoparticles in chitosan and gelatin hydrogel and its applications,” Materials Letters, vol. 248, pp. 241-245, 2019. DOI: https://doi.org/10.1016/j.matlet.2019.03.103
R. C. F. Cheung, T. B. Ng, J. H. Wong, and W. Y. Chan, "Chitosan: An update on potential biomedical and pharmaceutical applications, Marin Drugs, vol. 13, no. 8, pp. 5156-5186, 2015. DOI: https://doi.org/10.3390/md13085156
J. Robertson, “Chitin and chitosan: Production and application of versatile biomedical nanomaterials,” The American Mathematical Monthly, vol. 111, no. 10, p. 915, 2004. DOI: https://doi.org/10.2307/4145104
Z. Dehghani, M. Hosseini, J. Mohammadnejad, and M. R. Ganjali, “Novel colorimetric sensor based on peroxidase-like activity of chitosan-stabilized Au/Pt nanoclusters for trace lead,” Analytical Methods, vol. 11, no. 5, pp. 684-690, 2019. DOI: https://doi.org/10.1039/C8AY01975D
Z. Khan, “Chitosan capped Au@Pd@Ag trimetallic nanoparticles: Synthesis, stability, capping action and adsorbing activities,” International Journal of Biological Macromolecules, vol. 153, pp. 545-560, 2020. DOI: https://doi.org/10.1016/j.ijbiomac.2020.02.304
M. Piątkowski, J. Radwan-Pragłowska, Ł. Janus, D. Bogdał, D. Matysek, and V. Cablik, “Microwave-assisted synthesis and characterization of chitosan aerogels doped with Au-NPs for skin regeneration,” Polymer Testing, vol. 73, pp. 366-376, 2019. DOI: https://doi.org/10.1016/j.polymertesting.2018.11.024
H. S. H. Mohammed Ali, Sumiya, Y. Anwar, Y. O. Al-Ghamdi, M. Fakieh, and S. A. Khan, “Revealing the effect of MnO2, activated carbon and MnO2/ activated carbon on chitosan polymer host fabricated Co NPs: Antibacterial performance and degradation of organic compounds,” Polymers (Basel)., vol. 14, no. 3, pp. 1-16, 2022.. DOI: https://doi.org/10.3390/polym14030627
X. Huang, C. Xu, Y. Li, H. Cheng, X. Wang, and R. Sun, “Quaternized chitosan-stabilized copper sulfide nanoparticles for cancer therapy,” Materials Science and Engineering: C, vol. 96, pp. 129-137, 2019. DOI: https://doi.org/10.1016/j.msec.2018.10.062
M. Fathi, P. Sahandi Zangabad, J. Barar, A. Aghanejad, H. Erfan-Niya, and Y. Omidi, “Thermo-sensitive chitosan copolymer-gold hybrid nanoparticles as a nanocarrier for delivery of erlotinib,” International Journal of Biological Macromolecules vol. 106, pp. 266-276, 2018. DOI: https://doi.org/10.1016/j.ijbiomac.2017.08.020
S. A. Khan, E. M. Bakhsh, A. M. Asiri, and S. B. Khan, “Chitosan coated NiAl layered double hydroxide microsphere templated zero-valent metal NPs for environmental remediation,” Journal of Cleaner Production, vol. 285, p. 124830, 2021. DOI: https://doi.org/10.1016/j.jclepro.2020.124830
U. Banerji, and P. Workman, “Critical parameters in targeted drug development: the pharmacological audit trail,” Seminars in Oncology, vol. 43, no. 4, pp. 436-445, 2016. DOI: https://doi.org/10.1053/j.seminoncol.2016.06.001
C. Wang, X. Gao, Z. Chen, Y. Chen, and H. Chen, “Preparation, characterization and application of polysaccharide-based metallic nanoparticles: A review,” Polymers (Basel)., vol. 9, no. 12, 2017. DOI: https://doi.org/10.3390/polym9120689
A. I. El-Batal, F. M. Mosallam, M. M. Ghorab, A. Hanoram, M. Gobara, A. Baraka, M. A. Elsayed, K. Pal, R. M. Fathy, M. A. Elkodous, and G. S. El-Sayyad, “Factorial design-optimized and gamma irradiation-assisted fabrication of selenium nano-particles by chitosan and Pleurotus ostreatus fermented fenugreek for a vigorous in vitro effect against carcinoma cells,” International Journal of Biological Macromolecules, vol. 156, pp. 1584-1599, 2020. DOI: https://doi.org/10.1016/j.ijbiomac.2019.11.210
M. Soato, D. Galesso, R. Beninatto, F. Bettella, C. Guarise, and M. Pavan, “A versatile and robust analytical method for hyaluronan quantification in crosslinked products and complex matrices,” Carbohydrate Research, vol. 503, p. 108314, 2021. DOI: https://doi.org/10.1016/j.carres.2021.108314
G. Kogan, L. Šoltés, R. Stern, and P. Gemeiner, “Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications,” Biotechnology Letters, vol. 29, no. 1, pp. 17-25, 2007. DOI: https://doi.org/10.1007/s10529-006-9219-z
N. Kulik, B. Minofar, A. Jugl, and M. Pekař, “Computational study of complex formation between hyaluronan polymers and polyarginine peptides at various ratios,” Langmuir, vol. 39, no. 40, pp. 14212-14222, 2023. DOI: https://doi.org/10.1021/acs.langmuir.3c01318
A. Lierova, J. Kasparova, A. Filipova, J. Cizkova, L. Pekarova, L. Korecka, N. Mannova, Z. Bilkova, and Z. Sinkorova, “Hyaluronic acid: known for almost a century, but still in vogue,” Pharmaceutics, vol. 14, no. 4, pp. 1-35, 2022. DOI: https://doi.org/10.3390/pharmaceutics14040838
A. Sionkowska, M. Gadomska, K. Musiał, and J. Piatek, “Hyaluronic acid as a component of natural polymer blends for biomedical applications: A review,” Molecules, vol. 25, no. 18, 2020. DOI: https://doi.org/10.3390/molecules25184035
W. Huang, Y. Zhang, Z. Li, M. Li, F. Li, M. Mortimer, and L-H. Guo, “Silver and hyaluronic acid-coated gold nanoparticles modulate the metabolism of a model human gut bacterium lactobacillus casei,” Nanomaterials, vol. 12, no. 19, 2022. DOI: https://doi.org/10.3390/nano12193377
Y. Zhuang, L. Zhao, L. Zheng, Y. Hu, L. Ding, X. Li, C. Liu, J. Zhao, X. Shi, and R. Guo, “LAPONITE-Polyethylenimine Based Theranostic Nanoplatform for Tumor-Targeting CT Imaging and Chemotherapy,” ACS Biomaterials Science & Engineering, vol. 3, no. 3, pp. 431-442, 2017. DOI: https://doi.org/10.1021/acsbiomaterials.6b00528
H. Zhou, H. Xu, X. Li, Y. Lv, T. Ma, S. Guo, Z. Huang, X. Wang, and P. Xu, “Dual targeting hyaluronic acid - RGD mesoporous silica coated gold nanorods for chemo-photothermal cancer therapy,” Materials Science and Engineering: C, vol. 81, pp. 261-270, 2017. DOI: https://doi.org/10.1016/j.msec.2017.08.002
N. Beals, P. S. Thiagarajan, E. Soehnlen, A. Das, O. Reizes, J. D. Lathia, and S. Basu, “Five-part pentameric nanocomplex shows improved efficacy of doxorubicin in CD44+ cancer cells,” ACS Omega, vol. 2, no. 11, pp. 7702-7713, 2017. DOI: https://doi.org/10.1021/acsomega.7b01168
W. Xu, J. Qian, G. Hou, A. Suo, Y. Wang, J. Wang, T. Sun, M. Yang, X. Wan, and Y. Yao, "Hyaluronic acid-functionalized gold nanorods with pH/NIR dual-responsive drug release for synergetic targeted photothermal chemotherapy of breast cancer,” ACS Applied Materials & Interfaces, vol. 9, no. 42, pp. 36533-36547, 2017. DOI: https://doi.org/10.1021/acsami.7b08700
H. Hosseinzadeh, F. Atyabi, B. S. Varnamkhasti, R. Hosseinzadeh, S. N. Ostad, M. H. Ghahremani, and R. Dinarvand, “SN38 conjugated hyaluronic acid gold nanoparticles as a novel system against metastatic colon cancer cells,” International Journal of Pharmaceutics, vol. 526, no. 1-2, pp. 339-352, 2017. DOI: https://doi.org/10.1016/j.ijpharm.2017.04.060
J. R. Seo, H. W. Choi, D. E. Kim, D. Y. Park, E. J. Kim, and B. G. Chung, “Facile synthesis of surfactant-free au decorated hollow silica nanoparticles for photothermal applications,” Macromol. Res., vol. 26, no. 12, pp. 1129-1134, 2018. DOI: https://doi.org/10.1007/s13233-018-6143-8
H. Zhang, Y. Zhang, R. Jin, C. Wu, B. Zhang, Q. Zhang, and X. Chen, “Preparation and photothermal therapy of hyaluronic acid–conjugated Au nanoparticle-coated poly (glycidyl methacrylate) nanocomposites,” Journal of Materials Science, vol. 53, no. 24, pp. 16252-16262, 2018. DOI: https://doi.org/10.1007/s10853-018-2773-7
U. T. Uthappa, M. Suneetha, K. V. Ajeya, and S. M. Ji, “Hyaluronic acid modified metal nanoparticles and their derived substituents for cancer therapy: A review,” Pharmaceutics, vol. 15, no. 6, 2023. DOI: https://doi.org/10.3390/pharmaceutics15061713
L. Zeng, H. Cheng, Y. Dai, Z. Su, C. Wang, L. Lei, D. Lin, X. Li, H. Chen, K. Fan, and S. Shi, “In vivo regenerable cerium oxide nanozyme-loaded pH/H2O2-responsive nanovesicle for tumor-targeted photothermal and photodynamic therapies,” ACS Applied Mater Interfaces, vol. 13, no. 1, pp. 233-244, 2021. DOI: https://doi.org/10.1021/acsami.0c19074
C. R. Lee, G. G. Kim, S. B. Park, and S. W. Kim, “Synthesis of hyaluronic acid-conjugated Fe3O4@CeO2 composite nano-particles for a target-oriented multifunctional drug delivery system,” Micromachines, vol. 12, no. 9, 2021. DOI: https://doi.org/10.3390/mi12091018
J. C. Xue, S. Yuan, X-T. Hou, H. Meng, B-H. Liu, W-W. Cheng, M. Zhao, H-B. Li, X-F. Guo, C. Di, M-J. Li, and Q-G. Zhang, “Natural products modulate NLRP3 in ulcerative colitis,” Frontiers in Pharmacology, vol. 14, no. October, pp. 1-15, 2023. DOI: https://doi.org/10.3389/fphar.2023.1265825
I. S. Bayer, “Hyaluronic acid and controlled release: A review,” Molecules, vol. 25, no. 11, 2020, DOI: https://doi.org/10.3390/molecules25112649
S. Wang, S. Meng, X. Zhou, Z. Gao, and M. G. Piao, “pH-responsive and mucoadhesive nanoparticles for enhanced oral insulin delivery: The effect of hyaluronic acid with different molecular weights,” Pharmaceutics, vol. 15, no. 3, 2023. DOI: https://doi.org/10.3390/pharmaceutics15030820
X. Cai, H. yan, Y. Luo, Y. Song, Y. Zhao, H. Li, D. Du, and Y. Lin, “Mesoporous carbon nanospheres with ZnO nanolids for multimodal therapy of lung cancer,” ACS Applied Bio Materials, vol. 1, no. 4, pp. 1165-1173, 2018. DOI: https://doi.org/10.1021/acsabm.8b00381
M. Zheng, Z. Yang, S. Chen, H. Wu, Y. Liu, A. Wright, J-W. Lu, X. Xia, A. Lee, J. Zhang, H. Yin, Y. Wang, W. Ruan, and X-J. Liang, “Bioreducible Zinc(II)-dipicolylamine functionalized hyaluronic acid mediates safe siRNA Delivery and effective glioblastoma RNAi therapy,” ACS Applied Bio Materials, vol. 2, no. 1, pp. 362-369, 2019. DOI: https://doi.org/10.1021/acsabm.8b00622
Y. J. Kim, H. Perumalsamy, V. Castro-Aceituno, D. Kim, J. Markus, S. Lee, S. Kim, Y. Liu, and D. C. Yang, “Photo-luminescent and self-assembled hyaluronic acid-zinc oxide-ginsenoside Rh2 nanoparticles and their potential caspase-9 apoptotic mechanism towards cancer cell lines,” International Journal of Nanomedicine, vol. 14, pp. 8195-8208, 2019. DOI: https://doi.org/10.2147/IJN.S221328
Y. Wang, L. Zou, Z. Qiang, J. Jiang, Z. Zhu, and J. Ren, “Enhancing targeted cancer treatment by combining hyperthermia and radiotherapy using mn-zn ferrite magnetic nanoparticles,” ACS Biomaterials Science & Engineering Journal, vol. 6, no. 6, pp. 3550-3562, 2020. DOI: https://doi.org/10.1021/acsbiomaterials.0c00287
Y. Zhu, W. Li, X. Zhao, Z. Zhou, Y. Wang, Y. Cheng, Q. Huang, and Q. Zhang, “Hyaluronic acid-encapsulated platinum nanoparticles for targeted photothermal therapy of breast cancer,” Journal of Biomedical Nanotechnology, vol. 13, no. 11, pp. 1457-1467, 2017. DOI: https://doi.org/10.1166/jbn.2017.2446
H. T. Wang, P-C. Chou, P-H. Wu, C-M. Lee, K-H. Fan, W-J. Chang, S-Y. Lee, and H-M. Huang, "Physical and biological evaluation of low-molecular-weight hyaluronic Acid/Fe3O4 nanoparticle for targeting MCF7 breast cancer cells,” Polymers (Basel)., vol. 12, no. 5, 2020. DOI: https://doi.org/10.3390/polym12051094
J. Ming, T. Zhu, W. Yang, Y. Shi, D. Huang, J. Li, S. Xiang, J. Wang, X. Chen, and N. Zheng, “Pd@Pt-GOx/HA as a novel enzymatic cascade nanoreactor for high-efficiency starving-enhanced chemodynamic cancer therapy,” ACS Applied Materials & Interfaces, vol. 12, no. 46, pp. 51249-51262, 2020. DOI: https://doi.org/10.1021/acsami.0c15211
C. Zheng, A. Wu, X. Zhai, H. Ji, Z. Chen, X. Chen, and X. Yu, “The cellular immunotherapy of integrated photothermal anti-oxidation Pd–Se nanoparticles in inhibition of the macrophage inflammatory response in rheumatoid arthritis,” Acta Pharmaceutica Sinica B, vol. 11, no. 7, pp. 1993-2003, 2021. DOI: https://doi.org/10.1016/j.apsb.2021.02.021
H. A. Hussein, and M. A. Abdullah, “Novel drug delivery systems based on silver nanoparticles, hyaluronic acid, lipid nanoparticles and liposomes for cancer treatment,” Applied Nanoscience, vol. 12, no. 11, pp. 3071-3096, 2022. DOI: https://doi.org/10.1007/s13204-021-02018-9
O. Ivashchenko, Ł. Przysiecka, B. Peplińska, M. Jarek, E. Coy, and S. Jurga, “Gel with silver and ultrasmall iron oxide nanoparticles produced with Amanita muscaria extract: physicochemical characterization, microstructure analysis and anticancer properties,” Scientific Reports, vol. 8, no. 1, pp. 1-18, 2018. DOI: https://doi.org/10.1038/s41598-018-31686-x
T. Liu, X. Li, J. Wang, P. Zhang, X. Huang, Z. Zhang, D-S. Guo, and X. Yang, “Ag@S-nitrosothiol core-shell nanoparticles for chemo and photothermal synergistic tumor targeted therapy,” Journal of Materials Chemistry B, vol. 8, no. 25, pp. 5483-5490, 2020. DOI: https://doi.org/10.1039/D0TB00734J
C. Fu, R-M. Yang, L. Wang, N-n. Li, M. Qi, X-d. Xu, X-h. Wei, X-Q. Jiang, and L-M. Zhang, “Surface functionalization of superparamagnetic nanoparticles by an acid-liable poly-saccharide-based prodrug for combinatorial monitoring and chemotherapy of hepatocellular carcinoma,” RSC Advances, vol. 7, no. 66, pp. 41919-41928, 2017. DOI: https://doi.org/10.1039/C7RA05042A
G. Wang, S. Gao, R. Tian, J. Miller-Kleinhenz, Z. Qin, T. Liu, L. Li, F. Zhang, Q. Ma, and L. Zhu, "Theranostic hyaluronic acid–iron micellar nanoparticles for magnetic-field-enhanced in vivo cancer chemotherapy,” ChemMedChem, vol. 13, no. 1, pp. 78-86, 2018. DOI: https://doi.org/10.1002/cmdc.201700515
S. Zheng, J. Han, Z. Jin, C-S. Kim, S. Park, K-P. Kim, J-O. Park, and E. Choi, “Dual tumor-targeted multifunctional magnetic hyaluronic acid micelles for enhanced MR imaging and combined photothermal-chemotherapy,” Colloids Surfaces B Biointerfaces, vol. 164, pp. 424-435, 2018. DOI: https://doi.org/10.1016/j.colsurfb.2018.02.005
A. Apriyanto, J. Compart, and J. Fettke, “A review of starch, a unique biopolymer – Structure, metabolism and in planta modifications,” Plant Science, vol. 318, p. 111223, 2022. DOI: https://doi.org/10.1016/j.plantsci.2022.111223
J. F. Robyt, "Starch: Structure, Properties, Chemistry, and Enzymology, Glycoscience, pp. 1437-1472, 2008. DOI: https://doi.org/10.1007/978-3-540-30429-6_35
S. H. Park, Y. Na, J. Kim, S. D. Kang, and K-H. Park, “Properties and applications of starch modifying enzymes for use in the baking industry,” Food Science and Biotechnology, vol. 27, no. 5, pp. 299-312, 2018. DOI: https://doi.org/10.1007/s10068-017-0261-5
J. Chen, H. Li, C. Fang, Y. Cheng, T. Tan, and H. Han, “In situ synthesis and properties of Ag NPs/carboxymethyl cellulose/starch composite films for antibacterial application,” Polymer Composites, vol. 41, no. 3, pp. 838-847, 2020. DOI: https://doi.org/10.1002/pc.25414
V. Raji, M. Chakraborty, and P. A. Parikh, “Synthesis of starch-stabilized silver nanoparticles and their antimicrobial activity,” Plant Science Technology, vol. 30, no. 6, pp. 565-577, 2012. DOI: https://doi.org/10.1080/02726351.2011.626510
S. Tajammul Hussain, M. Iqbal, and M. Mazhar, “Size control synthesis of starch capped-gold nanoparticles,” Journal of Nanoparticle Research,., vol. 11, no. 6, pp. 1383-1391, 2009. DOI: https://doi.org/10.1007/s11051-008-9525-6
H. Dong, Y. Cheng, Y. Lu, K. Hou, L. Zhang, L. Li, B. Wang, Y. Wang, Q. Ning, and G. Zeng, “Comparison of toxicity of Fe/Ni and starch-stabilized Fe/Ni nanoparticles toward Escherichia coli,” Separation and Purification Technology, vol. 210, pp. 504-510, 2019. DOI: https://doi.org/10.1016/j.seppur.2018.08.042
N. Dasgupta, M. A. Nayak, and M. Gauthier, “Starch-stabilized iron oxide nanoparticles for the photocatalytic degradation of methylene blue,” Polysaccharides, vol. 3, no. 3, pp. 655-670, 2022. DOI: https://doi.org/10.3390/polysaccharides3030038
K. Wongmanee, S. Khuanamkam, and S. Chairam, “Gold nanoparticles stabilized by starch polymer and their use as catalyst in homocoupling of phenylboronic acid,” Journal of King Saud University - Science, vol. 29, no. 4, pp. 547-552, 2017. DOI: https://doi.org/10.1016/j.jksus.2017.08.007
V. Vishakha, A. M. Abdel-Mohsen, and J. Jancar, “Green synthesis and the stabilization of selenium nanoparticles using carboxymethyl starch,” NANOCON Conference Proceedings - International Conference on Nanomaterials, vol. 2021-October, pp. 433-439, 2021. DOI: https://doi.org/10.37904/nanocon.2020.3754
B. Lalithadevi, K. Mohan Rao, and D. Ramananda, “Investigations on structural and optical properties of starch capped ZnS nanoparticles synthesized by microwave irradiation method,” Chemical Physics Letters, vol. 700, pp. 74-79, 2018. DOI: https://doi.org/10.1016/j.cplett.2018.04.010
S. Faisal, H. Jan, S. A. Shah, S. Shah, A. Khan, M. T. Akbar, M. Rizwan, F. Jan, Wajidullah, N. Akhtar, A. Khattak, and S. Syed, “Green synthesis of zinc oxide (ZnO) Nanoparticles using aqueous fruit extracts of myristica fragrans: their characterizations and biological and environmental applications,” ACS Omega, vol. 6, no. 14, pp. 9709-9722, 2021. DOI: https://doi.org/10.1021/acsomega.1c00310
E. Kusrini, L. D. Wilson, K. M. Padmosoedarso, D. P. Mawarni, M. Sufyan, and A. Usman, “Synthesis of chitosan capped zinc sulphide nanoparticle composites as an antibacterial agent for liquid handwash disinfectant applications,” Journal of Composites Science, vol. 7, no. 2, pp. 1-17, 2023. DOI: https://doi.org/10.3390/jcs7020052
V. K. Gupta, M. L. Yola, T. Eren, F. Kartal, M. O. Çaǧlayan, and N. Atar, “Catalytic activity of Fe@Ag nanoparticle involved calcium alginate beads for the reduction of nitrophenols,” Journal of Molecular Liquids, vol. 190, pp. 133-138, 2014. DOI: https://doi.org/10.1016/j.molliq.2013.10.022
H. Liu, K. Ikeda, M. T. Nguyen, S. Sato, N. Matsuda, H. Tsukamoto, T. Tokunaga, and T. Yonezawa, “Alginate-stabilized gold nanoparticles prepared using the microwave-induced plasma-in-liquid process with long-term storage stability for potential biomedical applications,” ACS Omega, vol. 7, no. 7, pp. 6238-6247, 2022. DOI: https://doi.org/10.1021/acsomega.1c06769
K. B. Narayanan, and S. S. Han, “Colorimetric detection of manganese(II) ions using alginate-stabilized silver nanoparticles,” Research on Chemical Intermediates, vol. 43, no. 10, pp. 5665-5674, 2017. DOI: https://doi.org/10.1007/s11164-017-2954-z
A. Akturk, F. Karbancioglu-Guler, E. Melek, G. Goller, S. Kucukbayrak, “Synthesis and antifungal activity of soluble starch and sodium alginate capped copper nanoparticles,” Materials Reseacrh Express, vol. 6, no. 12, 2019. DOI: https://doi.org/10.1088/2053-1591/ab677e
Y. A. Yugay, R. V. Usoltseva, V. E. Silant'ev, A. E. Egorova, A. A. Karabtsov, V. V. Kumeiko, S. P. Ermakova, V. P. Bulgakov, and Y. N. Shkrul, “Synthesis of bioactive silver nanoparticles using alginate, fucoidan and laminaran from brown algae as a reducing and stabilizing agent,” Carbohydrate Polymer, vol. 245, p. 116547, 2020. DOI: https://doi.org/10.1016/j.carbpol.2020.116547
Y. Xiong, L. Huang, S. Mahmud, F. Yang, and H. Liu, “Bio-synthesized palladium nanoparticles using alginate for catalytic degradation of azo-dyes,” Chinese Journal of Chemical Engineering, vol. 28, no. 5, pp. 1334-1343, 2020. DOI: https://doi.org/10.1016/j.cjche.2020.02.014
W. H. Lam, M. N. Chong, B. A. Horri, B. T. Tey, and E. S. Chan, “Physicochemical stability of calcium alginate beads immobilizing TiO2 nanoparticles for removal of cationic dye under UV irradiation,” Journal of Applied Polymer Science, vol. 134, no. 26, pp. 1-8, 2017. DOI: https://doi.org/10.1002/app.45002
J. Díaz-Visurraga, C. Daza, C. Pozo, A. Becerra, C. von Plessing, and A. García, “Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy,” International Journal of Nanomedicine, vol. 7, pp. 3597-3612, 2012. DOI: https://doi.org/10.2147/IJN.S32648
J. Wu, X. Bin Wang, and R. J. Zeng, “Reactivity enhancement of iron sulfide nanoparticles stabilized by sodium alginate: Taking Cr (VI) removal as an example,” Journal of Hazardous Materials, vol. 333, no. Vi, pp. 275-284, 2017. DOI: https://doi.org/10.1016/j.jhazmat.2017.03.023
F. Loosli, P. Le Coustumer, and S. Stoll, “Effect of electrolyte valency, alginate concentration and pH on engineered TiO2 nanoparticle stability in aqueous solution,” Science of the Total Environment, vol. 535, pp. 28-34, 2015. DOI: https://doi.org/10.1016/j.scitotenv.2015.02.037
Y. Shao, C. Wu, T. Wu, C. Yuan, S. Chen, T. Ding, X. Ye, and Y. Hu, “Green synthesis of sodium alginate-silver nanoparticles and their antibacterial activity,” International Journal of Biological Macromolecules, vol. 111, pp. 1281-1292, 2018. DOI: https://doi.org/10.1016/j.ijbiomac.2018.01.012
X. Zhao, Q. Li, X. Ma, F. Quan, J. Wang, and Y. Xia, “The preparation of alginate-AgNPs composite fiber with green approach and its antibacterial activity,” Journal of Industrial and Engineering Chemistry, vol. 24, pp. 188-195, 2015. DOI: https://doi.org/10.1016/j.jiec.2014.09.028
S. Saha, A. Pal, S. Kundu, S. Basu, and T. Pal, “Photochemical
green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction,” Langmuir, vol. 26, no. 4, pp. 2885-2893, 2010. DOI: https://doi.org/10.1021/la902950x
N. T. Anh, D. V. Phu, N. N. Duy, B. D. Du, and N. Q. Hien, “Synthesis of alginate stabilized gold nanoparticles by γ-irradiation with controllable size using different Au3+ concentration and seed particles enlargement,” Radiation Physics and Chemistry, vol. 79, no. 4, pp. 405-408, 2010. DOI: https://doi.org/10.1016/j.radphyschem.2009.11.013
F. Foliatini, Y. Yulizar, and M. A. E. Hafizah, “Microwave-assisted synthesis of alginate-stabilized gold nanoparticles,” Makara Journal of Science, vol. 18, no. 4, 2015. DOI: https://doi.org/10.7454/mss.v18i4.4281
Y. Anwar, H. S. H. Mohammed Ali, W. U. Rehman, H. A. Hemeg, and S. A. Khan, “Antibacterial films of alginate-coni-coated cellulose paper stabilized co nps for dyes and nitrophenol degradation,” Polymers (Basel)., vol. 13, no. 23, 2021. DOI: https://doi.org/10.3390/polym13234122
A. R. Egorov, A. A. Kirichuk, V. V. Rubanik, V. V. Rubanik, A. G. Tskhovrebov, and A. S. Kritchenkov, “Chitosan and its derivatives: Preparation and antibacterial properties,” Materials (Basel)., vol. 16, no. 18, 2023. DOI: https://doi.org/10.3390/ma16186076
H. Zhou, C. C. Mayorga-Martinez, S. Pané, L. Zhang, and M. Pumera, “Magnetically driven micro and nanorobots,” Chemical Reviews, vol. 121, no. 8, pp. 4999-5041, 2021. DOI: https://doi.org/10.1021/acs.chemrev.0c01234
M. Usman, M. Nakagawa, and S. Cheng, “Emerging trends in green extraction techniques for bioactive natural products,” Processes, vol. 11, no. 12, 2023. DOI: https://doi.org/10.3390/pr11123444
D. Kulkarni, R. Sherkar, C. Shirsathe, R. Sonwane, N. Varpe, S. Shelke, M. P. More, S. R. Pardeshi, G. Dhaneshwar, V. Junnuthula, and S. Dyawanapelly, “Biofabrication of nano-particles: sources, synthesis, and biomedical applications,” Frontiers in Bioengineering and Biotechnology, vol. 11, pp. 1-26, 2023. DOI: https://doi.org/10.3389/fbioe.2023.1159193
Z. S. Khan, S. Amir, T. S. Cvetnic, A. J. Tusek, M. Benkovic, T. Jurina, D. Valinger, and J. G. Kljusuric, “Sustainable isolation of bioactive compounds and proteins from plant-based food (and byproducts),” Plants, vol. 12, no. 16, p. 2904, 2023. DOI: https://doi.org/10.3390/plants12162904
M. Nikbakht Nasrabadi, A. Sedaghat Doost, and R. Mezzenga, “Modification approaches of plant-based proteins to improve their techno-functionality and use in food products,” Food Hydrocolloids, vol. 118, no. January, 2021. DOI: https://doi.org/10.1016/j.foodhyd.2021.106789
Z. Behrooznia and J. Nourmohammadi, “Polysaccharide-based materials as an eco-friendly alternative in biomedical, environ-mental, and food packaging,” Giant, vol. 19, p. 100301, 2024. DOI: https://doi.org/10.1016/j.giant.2024.100301
Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Metals, Materials and Minerals
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.