Efficacy of BiFeO\(_{3}\) and Bi\(_{4}\)Ti\(_{3}\)O\(_{12}\) towards photocatalytic degradation of MG and MB dyes: A comparative study under solar irradiation

photocatalytic degradation of dyes

Authors

  • Rasmirekha Department of Chemistry, ITER, Siksha ’O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India https://orcid.org/0000-0002-1445-0622
  • Rishabh kamal Department of Chemistry, ITER, Siksha ’O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India https://orcid.org/0009-0009-6589-3253
  • Debapriya Department of Chemistry, ITER, Siksha ’O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India https://orcid.org/0000-0003-4226-1498
  • Suresh Kumar DASH Department of Chemistry, ITER, Siksha ’O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India

DOI:

https://doi.org/10.55713/jmmm.v35i1.2228

Keywords:

BiFeO3, Bi4Ti3O12, Dyes, Kinetics, Kinetics and Mechanism

Abstract

Bismuth-based perovskite material has been used as promising photocatalysts for photo catalytic degradation of toxic dyes with tailored crystallites and fine-tuned band gap for superior activity. BiFeO3 and Bi4Ti3O12 were synthesized by a simple sol-gel method and their crystal structure, morphology, and optical property were characterized by XRD, SEM, TEM, FTIR, EDS and UV–DRS. The XRD pattern exhibits the formation of rhombohedral and orthorhombic phase of bismuth ferrite and bismuth titanate. The study confirms the formation of non-uniform BiFeO3 and Bi4Ti3O12 nanoparticles with uniform particle distribution, with band gap energy (Eg) of 2.2 eV and 2.9 eV, respectively, from UV-DRS analyses and Tauc Plot. The study examined the photocatalytic degradation of a prepared catalyst for MG and MB dyes by altering parameters like solution pH, catalyst dose, and agitation time. The results indicated that BiFeO3 exhibited higher degrading efficiency compared to Bi4Ti3O12 under similar experimental conditions. BiFeO3 degraded more than @ 80% of both MG and MB dyes with 0.4 mg∙L1 within 90 min compared to more than @ 74% for Bi4Ti3O12 having 0.6 mg∙L1 catalyst taken in 20 mL of 20 ppm dye concentration in 60 min with prevailing parameter conditions. The higher efficacy of BiFeO3 may be contributed to the Eg that makes the catalyst more active under solar spectrum. The degradation mechanism involved photoinduced electron/hole pairs producing active radical species, with kinetics following a pseudo-first order rate and photocatalyst stability studied through five continuous runs. The study found that BiFeO3 outperforms Bi4Ti3O12 in reducing cationic dyes and suggests them as potential waste water treatment alternatives.

Downloads

Download data is not yet available.

Author Biographies

Rasmirekha, Department of Chemistry, ITER, Siksha ’O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India

Junior reseacrch scholar ,Department of Chemistry, ITER.

Rishabh kamal, Department of Chemistry, ITER, Siksha ’O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India

Department of chemistry,,ITER, Junior research scholar

Debapriya, Department of Chemistry, ITER, Siksha ’O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India

Department of chemistry,ITER

References

C. Liu, J. Zhang, W. Wang, L. Chen, and M. Zhu, “Progress in the synthesis and applications of N-rich carbon nitride (C3N5)-based catalysts in environmental and energy catalysis,” Surfaces and Interfaces, vol. 42, p. 103491, 2023. DOI: https://doi.org/10.1016/j.surfin.2023.103491

J. Zhang, G. Yu, C. Yang, and S. Li, “Recent progress on S-scheme heterojunction strategy enabling polymer carbon nitrides C3N4 and C3N5 enhanced photocatalysis in energy conversion and environmental remediation,” Current Opinion in Chemical Engineering, vol. 45, p. 101040, 2024. DOI: https://doi.org/10.1016/j.coche.2024.101040

Haruna, I. Abdulkadir, and S. O. Idris, “Effect of annealing temperature on the synthesis and photocatalytic properties of Bi0.65K0.2Ba0.15FeO3 perovskite-like nanoparticle synthesized by sol-gel method,” Beni-Suef University Journal of Basic and Applied Sciences, vol. 9, no. 1, 2020. DOI: https://doi.org/10.1186/s43088-020-0033-9

M. A. El-Bendary, M. E. Fawzy, M. Abdelraof, M. El-Sedik, and M. A. Allam, “Efficient malachite green biodegradation by Pseudomonas plecoglossicide MG2: Process optimization, application in bioreactors, and degradation pathway,” Microbial Cell Factories, vol. 22, no. 1, 2023. DOI: https://doi.org/10.1186/s12934-023-02194-z

Z. Kalaycıoğlu, B. Ö. Uysal, Ö. Pekcan, and F. B. Erim, “Efficient photocatalytic degradation of methylene blue dye from aqueous solution with cerium oxide nanoparticles and graphene oxide-doped polyacrylamide,” ACS Omega, vol. 8, no. 14, pp. 13004-13015, 2023. DOI: https://doi.org/10.1021/acsomega.3c00198

P. K. Panda, R. Pattanaik, S. Mishra, D. Pradhan, and S. K. Dash, “Superior photocatalytic degradation of MB dye using BiVO4 nanoparticles under solar light irradiation,” Materials Today Proceedings, 2023. DOI: https://doi.org/10.1016/j.matpr.2023.11.039

S. Li, C. You, K. Rong, C. Zhuang, X. Chen, and B. Zhang, “Chemically bonded Mn0.5Cd0.5S/BiOBr S-scheme photocatalyst with rich oxygen vacancies for improved photocatalytic decontamination performance,” Advanced Powder Materials, vol. 3, no. 3, p. 100183, 2024. DOI: https://doi.org/10.1016/j.apmate.2024.100183

C. Shen, X. Li, B. Xue, D. Feng, Y. Liu, F. Yang, M. Zhang, and S. Li, “Surface plasmon effect combined with S-scheme charge migration in flower-like Ag/Ag6Si2O7/Bi12O17Cl2 enables efficient photocatalytic antibiotic degradation,” Applied Surface Science, vol. 679, p. 161303, 2024. DOI: https://doi.org/10.1016/j.apsusc.2024.161303

S. Li, C. You, Q. Xue, Y. Zhao, F. Yang, Y. Liu, L. Bai, M. Zhang, and C. Zhuang, “Carbon quantum dots and interfacial chemical bond synergistically modulated S-scheme Mn0.5Cd0.5S/ BiOBr photocatalyst for efficient water purification,” Journal of Material Science and Technology, vol. 214, pp. 255-265, 2024 DOI: https://doi.org/10.1016/j.jmst.2024.07.015

G. Pirgholi-Givi, S. Farjami-Shayesteh, and Y. Azizian-Kalandaragh, “The influence of preparation parameters on the photocatalytic performance of mixed bismuth titanate-based nanostructures,” Physica B Condensed Matter, vol. 575, p. 311572, 2019. DOI: https://doi.org/10.1016/j.physb.2019.07.007

L. Mohanty, D. S. Pattanayak, R. Singhal, D. Pradhan, and S. K. Dash, “Enhanced photocatalytic degradation of rhodamine B and malachite green employing BiFeO3/g-C3N4 nanocomposites: An efficient visible-light photocatalyst,” Inorganic Chemistry Communications, vol. 138, p. 109286, 2022.

N. Anu, and K. Yadav, “Optical and dielectric properties of Bi2Ti2O7/Bi4Ti3O12 nanocomposite,” Materials Today Proceedings, vol. 28, pp. 153-157, 2020. DOI: https://doi.org/10.1016/j.matpr.2020.01.467

Y. Geng, X. Zhang, and F. Wang, “Investigation of the physical characteristics of Bi4Ti3O12, Bi2Ti4O11, Bi12TiO20, Bi2Ti2O7 ternary semiconductors,” Materials Science in Semiconductor Processing, vol. 181, p. 108658, 2024. DOI: https://doi.org/10.1016/j.mssp.2024.108658

R. Pattanaik, D. Pradhan, and S. K. Dash, “A brief review on solar light assisted photocatalytic degradation of dyes using double/layered perovskites,” Current Nanoscience, vol. 20, 2024. DOI: https://doi.org/10.2174/0115734137296172240311112922

S. Xu, W. Shangguan, J. Yuan, J. Shi, and M. Chen, “Photo-catalytic properties of bismuth titanate Bi12TiO20 prepared by co-precipitation processing,” Materials Science and Engineering B, vol. 137, no. 1-3, pp. 108-111, 2006. DOI: https://doi.org/10.1016/j.mseb.2006.10.019

T. Cheng, Q. Ma, H. Gao, S. Meng, Z. Lu, S.-F. Wang, Z. Yi, X. Wu, G. Liu, X. Wang, and H. Yang, “Enhanced photo-catalytic activity, mechanism and potential application of Idoped-Bi4Ti3O12 photocatalysts,” Materials Today Chemistry, vol. 23, p. 100750, 2022. DOI: https://doi.org/10.1016/j.mtchem.2021.100750

N. D. M. Ridzuan et al., “Photocatalytic heterostructures-based BiFeO3 embedded liquid natural rubber (LNR) for highly removal of cationic dye under direct sunlight,” Journal of Environmental Chemical Engineering, vol. 8, no. 5, p. 104152, 2020. DOI: https://doi.org/10.1016/j.jece.2020.104152

S. E. Ali, “Influence of preparation method on phase formation, structural and magnetic properties of BiFeO3,” Journal of Electroceramics, vol. 48, no. 2, pp. 95-101, 2022. DOI: https://doi.org/10.1007/s10832-021-00276-1

K. Afroz, M. Moniruddin, N. Bakranov, S. Kudaibergenov, and N. Nuraje, “A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials,” Journal of Materials Chemistry A, vol. 6, no. 44, pp. 21696-21718, 2018. DOI: https://doi.org/10.1039/C8TA04165B

R. He, D. Xu, B. Cheng, J. Yu, and W. Ho, “Review on nano-scale Bi-based photocatalysts,” Nanoscale Horizons, vol. 3, no. 5, pp. 464-504, 2018. DOI: https://doi.org/10.1039/C8NH00062J

S. K. Badge and A. V. Deshpande, “Effect of pressure of pelletization on dielectric properties of bismuth titanate prepared by sol-gel synthesis,” Advanced Powder Technology, vol. 29, no. 3, pp. 555-562, 2017. DOI: https://doi.org/10.1016/j.apt.2017.11.011

Y. Wu, Y. Zang, L. Xu, J. Wang, H. Jia, and F. Miao, “Synthesis of functional conjugated microporous polymer/TiO2 nano-composites and the mechanism of the photocatalytic degradation of organic pollutants,” Journal of Materials Science, vol. 56, no. 13, pp. 7936-7950, 2021. DOI: https://doi.org/10.1007/s10853-021-05790-9

Z. Chen, J. Hu, and X. He, “Piezoelectric and dielectric properties of (Na0.5K0.5)NbO3-Bi0.5(Na0.8K0.2)0.5TiO3 lead-free ceramics,” Journal of the Ceramic Society of Japan, vol. 116, no. 1353, pp. 661-663, 2008. DOI: https://doi.org/10.2109/jcersj2.116.661

F. Lin, Q. Yu, L. Deng, Z. Zhang, X.-Y. He, A. Liu, and W. Shi, “Effect of La/Cr codoping on structural transformation, leakage, dielectric and magnetic properties of BiFeO3 ceramics,” Journal of Materials Science, vol. 52, no. 12, pp. 7118-7129, 2017. DOI: https://doi.org/10.1007/s10853-017-0947-3

M. Sivagami, and I. V. Asharani, “Phyto-mediated Ni/NiO NPs and their catalytic applications-a short review,” Inorganic Chemistry Communications, vol. 145, p. 110054, 2022. DOI: https://doi.org/10.1016/j.inoche.2022.110054

M. E. Castillo, V. V. Shvartsman, D. Gobeljic, Y. Gao, J. Landers, H. Wende, and D. Lupascu, “Effect of particle size on ferroelectric and magnetic properties of BiFeO3 nanopowders,” Nanotechnology, vol. 24, no. 35, p. 355701, 2013. DOI: https://doi.org/10.1088/0957-4484/24/35/355701

T. Xian, H. Yang, X. Shen, J. L. Jiang, Z. Q. Wei, and W. J. Feng, “Preparation of high-quality BiFeO3 nanopowders via a polyacrylamide gel route,” Journal of Alloys and Compounds, vol. 480, no. 2, pp. 889-892, 2009. DOI: https://doi.org/10.1016/j.jallcom.2009.02.068

P. Thiruramanathan, S. K. Sharma, S. Sankar, R. S. Ganesh, A. Marikani, and D. Y. Kim, “Synthesis of bismuth titanate (BTO) nanopowder and fabrication of microstrip rectangular patch antenna,” Applied Physics A, vol. 122, no. 12, 2016. DOI: https://doi.org/10.1007/s00339-016-0549-y

J. Zhu, M. Ye, and A. Han, “Preparation and microwave absorption properties of BiFeO3 and BiFeO3/PANI composites,” Journal of Materials Science Materials in Electronics, vol. 28, no. 18, pp. 13350-13359, 2017. DOI: https://doi.org/10.1007/s10854-017-7172-3

J. A. Dias, J. A. Oliveira, C. G. Renda, and M. R. Morelli, “Production of nanometric Bi4Ti3O12 powders: From synthesis to optical and dielectric properties,” Materials Research, vol. 21, no. 5, 2018. DOI: https://doi.org/10.1590/1980-5373-mr-2018-0118

D. Hou, X. Hu, P. Hu, W. Zhang, M. Zhang, and Y. Huang, “Bi4Ti3O12 nanofibers–BiOI nanosheets p–n junction: facile synthesis and enhanced visible-light photocatalytic activity,” Nanoscale, vol. 5, no. 20, p. 9764, 2013. DOI: https://doi.org/10.1039/c3nr02458j

T. Hu, K. Dai, J. Zhang, and S. Chen, “Noble-metal-free Ni2P modified step-scheme SnNb2O6/CdS-diethylenetriamine for photocatalytic hydrogen production under broadband light irradiation,” Applied Catalysis B Environment and Energy, vol. 269, p. 118844, 2020. DOI: https://doi.org/10.1016/j.apcatb.2020.118844

J. H. Jang, K.-S. Jeon, S. Oh, H-J. Kim, T. Asahi, H. Masuhara, and M. Yoon,“Synthesis of Sn-porphyrin-intercalated trititanate nanofibers: optoelectronic properties and photocatalytic activities,” Chemistry of Materials, vol. 19, no. 8, pp. 1984-1991, 2007. DOI: https://doi.org/10.1021/cm0629863

N. Sonu, S. Sharma, V. Dutta, P. Raizada, A. Singh, P. Singh, T. Ahamad, Q. V. Le, and V.-H. Hguyen, “Type-II heterojunction-based magnetic ZnFe2O4@CuFe2O4@SiO2 photocatalyst for photodegradation of toxic dyes from wastewater,” Applied Nanoscience, vol. 13, no. 5, pp. 3693-3707, 2022. DOI: https://doi.org/10.1007/s13204-022-02500-y

L. Wang, W. Ma, Y. Fang, Y. Zhang, M. Jia, R. Li, and Y. Huang, “Bi4Ti3O12 synthesized by high temperature solid phase method and it’s visible catalytic activity,” Procedia Environmental Sciences, vol. 18, pp. 547-558, 2013. DOI: https://doi.org/10.1016/j.proenv.2013.04.074

P. M. Razad, S. Kasimedu, V. Ganesan, R. J. Choudhary, A. M. E. Raj, R. Devaraj, J. M. Nair, K. Mahalakshmi, M. M. Patidar, V. R. Sreelakshmi, M. Govindasamy, and S. Chinnappanadar, “Novel report on single phase BiFeO3 nanorod layer synthesised rapidly by novel hot-wall spray pyrolysis system: evidence of high magnetization due to surface spins,” Journal of Materials Science Materials in Electronics, vol. 28, no. 4, pp. 3217-3225, 2016. DOI: https://doi.org/10.1007/s10854-016-5911-5

L. Mohanty, D. S. Pattanayak, R. Singhal, D. Pradhan, and S. K. Dash, “Enhanced photocatalytic degradation of rhodamine B and malachite green employing BiFeO3/g-C3N4 nanocomposites: An efficient visible-light photocatalyst,” Inorganic Chemistry Communications, vol. 138, p. 109286, 2022. DOI: https://doi.org/10.1016/j.inoche.2022.109286

D. Pradhan, L. Mohanty, R. Singhal, E. Falletta, and S. K. Dash, “Sustainable and solar light assisted photocatalytic degradation of MB and MG dyes by Co3O4/g-C3N4 nanocomposite,” Inorganic Chemistry Communications, vol. 156, p. 111259, 2023. DOI: https://doi.org/10.1016/j.inoche.2023.111259

G. Pirgholi-Givi, Y. Azizian-Kalandaragh, and J. Farazin, “Comparison of the photocatalytic activity of perovskite structures: Bismuth, barium, and zinc titanate nanostructures for photodegradation of methylene blue from water,” Journal of Photochemistry and Photobiology a Chemistry, vol. 408, p. 113104, 2020. DOI: https://doi.org/10.1016/j.jphotochem.2020.113104

D. Rosa, G. Manetta, and L. Di Palma, “Experimental assessment of the pH effect and ions on the photocatalytic activity of iron-doped titanium dioxide supported on polystyrene pellets: Batch and continuous tests,” Chemical Engineering Science, vol. 291, p. 119918, 2024. DOI: https://doi.org/10.1016/j.ces.2024.119918

Y. Chen, S. Xu, C. F. Wen, H. Zhang, T. Zhand, F. Lv, Y. Yue, and Z. Bian, “Unravelling the role of free radicals in photo-catalysis,” Chemistry - a European Journal, vol. 30, no. 29, p. e202400001, 2024. DOI: https://doi.org/10.1002/chem.202400001

M. F. A. Messih, M. A. Ahmed, A. Soltan, and S. S. Anis, “Synthesis and characterization of novel Ag/ZnO nanoparticles for photocatalytic degradation of methylene blue under UV and solar irradiation,” Journal of Physics and Chemistry of Solids, vol. 135, p. 109086, 2019. DOI: https://doi.org/10.1016/j.jpcs.2019.109086

D. Pradhan, S. K. Biswal, R. Pattanaik, N. Nayak, and S. K. Dash, “Strontium doped, a p-n heterojunctionTiO2/Sr-Co3O4 composite for enhanced photocatalytic degradation of MG dye under solar light irradiation,” New Journal of Chemistry, vol. 48, no. 38, pp. 16853-16868, 2024.

D. Pradhan, S. K.Biswal, N. Nayak, R. Singhal, S. K. Beriha, R. Pattanaik, and S. K. Dash, “Bioinspired synthesis of transition metal‐enhanced Co3O4 using mangifera indica leaves for photo-catalytic and energy storage applications,” ChemistrySelect, vol. 9, no. 48, p. e202403211, 2024. DOI: https://doi.org/10.1002/slct.202403211

D. Pradhan, S. K. Biswal, R. Pattanaik, N. Nayak, and S. K. Dash, “Strontium doped, a p-n heterojunctionTiO2/Sr-Co3O4 composite for enhanced photocatalytic degradation of MG dye under solar light irradiation,” New Journal of Chemistry, vol. 48, no. 38, pp. 16853-16868, 2024. DOI: https://doi.org/10.1039/D4NJ02906B

L. D. Namade, S. S. Band, P. K. Pawar, A. R. Patil, R. S. Pedanekar, K. G. Managave, V. V. Ganbavle, and K. Y. Rajpure, “Ultraviolet light-driven degradation of organic dyes using SrTiO3 photocatalytic nanoparticles,” Colloids and Surfaces a Physico-chemical and Engineering Aspects, vol. 708, p. 135976, 2025. DOI: https://doi.org/10.1016/j.colsurfa.2024.135976

V. Jose, V. Jose, E. Kuruvilla, M. Arunkumar, A. S. Deepi,

G. Srikesh, and A. S. Nesaraj “Facile chemical synthesis of Mg-doped NiMnO3 perovskite based nano-structured materials: Application in photocatalysis and supercapacitors,” Inorganic Chemistry Communications, vol. 156, p. 111205, 2023. DOI: https://doi.org/10.1016/j.inoche.2023.111205

H. Bantawal, and D. K. Bhat, “Hierarchical porous BaTiO3 nano-hexagons as a visible light photocatalyst,” International Journal of Engineering & Technology, vol. 7, no. 4.5, pp. 105-109, 2018. DOI: https://doi.org/10.14419/ijet.v7i4.5.20022

P. Zhu, R. Wang, M. Duan, Y. Chen, M. Hu, X. Luo, and H. Teng, “efficient adsorption and photocatalytic degradation of dyes by AgI‐Bi2MoO6/vermiculite composite under visible light,” ChemistrySelect, vol. 4, no. 41, pp. 12022-12031, 2019. DOI: https://doi.org/10.1002/slct.201901873

N. Kitchamsetti, P. N. Didwal, S. R. Mulani, M. S. Patil, and R. S. Devan, “Photocatalytic activity of MnTiO3 perovskite nanodiscs for the removal of organic pollutants,” Heliyon, vol. 7, no. 6, p. e07297, 2021. DOI: https://doi.org/10.1016/j.heliyon.2021.e07297

J. N. Tsaviv, I. S. Eneji, R. Sha’Ato, I. Ahemen, P. R. Jubu, and Y. Yusof, “Photodegradation, kinetics and non-linear error functions of methylene blue dye using SrZrO3 Perovskite photocatalyst,” Heliyon, vol. 10, no. 14, p. e34517, 2024. DOI: https://doi.org/10.1016/j.heliyon.2024.e34517

C. Karthikeyan, M. Thamima, and S. Karuppuchamy, “Dye removal efficiency of perovskite structured CaTiO3 nanospheres prepared by microwave assisted method,” Materials Today Proceedings, vol. 35, pp. 44-47, 2019. DOI: https://doi.org/10.1016/j.matpr.2019.05.421

A. H. Shankara, J. S. Prabagar, T. Tenzin, S. Yadav, K. M. A. Kumar, and H. P. Shivaraju, “Facile synthesis of NdFeO3 perovskite for photocatalytic degradation of organic dye and antibiotic,” Materials Today Proceedings, vol. 75, pp. 15-23, 2022. DOI: https://doi.org/10.1016/j.matpr.2022.10.230

J. Ćirković, A. Radojković, D. L.Golić, N. Tasić, M.Čizmić,

G. Branković, and Z. Branković, “Visible-light photocatalytic degradation of Mordant Blue 9 by single-phase BiFeO3 nano-particles,” Journal of Environmental Chemical Engineering, vol. 9, no. 1, p. 104587, 2020. DOI: https://doi.org/10.1016/j.jece.2020.104587

S. Parida, J. Nanda, B. Sarangi, and R. Behera, “Plant extract mediated synthesis of BiFeO3 nanoparticles for photocatalytic degradation of methylene blue dye,” Biomass Conversion and Biorefinery, 2024. DOI: https://doi.org/10.1007/s13399-024-06100-4

N. N. Mharsale, P. S. More, Y. B. Khollam, S. F. Shaikh, A. M. Al-Enizi, and S. R. Gadakh, “Visible light-induced photocatalytic degradation of methylene blue dye using pure phase bismuth ferrite nanoparticles,” Journal of Physics and Chemistry of Solids, vol. 192, p. 112049, 2024. DOI: https://doi.org/10.1016/j.jpcs.2024.112049

S. Bharathkumar, M. Sakar, and S. Balakumar, “Egg white-mediated synthesis of BiFeO3 cubes and their enhanced photocatalytic degradation properties under solar irradiation,” Journal of Materials Science Materials in Electronics, vol. 33, no. 16, pp. 12638-12647, 2022. DOI: https://doi.org/10.1007/s10854-022-08213-w

S. Niu, R. Zhang, X. Zhang, J. Xiang, and C. Guo, “Morphology-dependent photocatalytic performance of Bi4Ti3O12,” Ceramics International, vol. 46, no. 5, pp. 6782-6786, 2019. DOI: https://doi.org/10.1016/j.ceramint.2019.11.169

P. Thiruramanathan, S. Manjula, N. Karthikeyan, R. Srinivasan, and V. Sivakumar, “Photodegradation behaviour of sol–gel synthesized Bi4Ti3O12 for water pollution disinfection,” Materials Today Proceedings, 2023. DOI: https://doi.org/10.1016/j.matpr.2023.05.709

Y. Zhang, J. Gao, Z. Chen, and Z. Lu, “Enhanced photocatalytic performance of Bi4Ti3O12 nanosheets synthesized by a self-catalyzed fast reaction process,” Ceramics International, vol. 44, no. 18, pp. 23014-23023, 2018. DOI: https://doi.org/10.1016/j.ceramint.2018.09.103

A. R. Noviyanti, D. R. Eddy, M. D. Permana, and R. Risdiana, “Heterophase of bismuth titanate as a photocatalyst for rhodamine B degradation,” Trends in Sciences, vol. 20, no. 10, p. 6147, 2023. DOI: https://doi.org/10.48048/tis.2023.6147

Downloads

Published

2025-02-25

How to Cite

[1]
R. . PATTANAIK, R. . KAMAL, D. . PRADHAN, and S. K. DASH, “Efficacy of BiFeO\(_{3}\) and Bi\(_{4}\)Ti\(_{3}\)O\(_{12}\) towards photocatalytic degradation of MG and MB dyes: A comparative study under solar irradiation: photocatalytic degradation of dyes”, J Met Mater Miner, vol. 35, no. 1, p. e2228, Feb. 2025.

Issue

Section

Original Research Articles

Categories