Synergistic effects of Co-Ni nanoalloys on SiO\(_{2}\)@TiO\(_{2}\): A novel approach to photocatalytic tetracycline degradation

Authors

  • Pratyush Kumar SAHU Department of Chemistry, ITER, Siksha ‘O’ Anusandhan, deemed to be University, Bhubaneswar, Odisha, India
  • Alaka RATH Department of Chemistry, ITER, Siksha ‘O’ Anusandhan, deemed to be University, Bhubaneswar, Odisha, India
  • Aslisha CHAMPATI Department of Chemistry, ITER, Siksha ‘O’ Anusandhan, deemed to be University, Bhubaneswar, Odisha, India
  • Ashish MADUAL CSIR-Institute of Materials and Minerals Technology, Bhubaneswar, Odisha, India
  • Pravat Manjari MISHRA CSIR-Institute of Materials and Minerals Technology, Bhubaneswar, Odisha, India
  • Abanti PRADHAN Department of Chemistry, ITER, Siksha ‘O’ Anusandhan, deemed to be University, Bhubaneswar, Odisha, India
  • Brundabana NAIK Department of Chemistry, ITER, Siksha ‘O’ Anusandhan, deemed to be University, Bhubaneswar, Odisha, India

DOI:

https://doi.org/10.55713/jmmm.v35i2.2241

Keywords:

Photocatalysis, Visible light, Core-shell, Photodegradation, Synergistic effect

Abstract

To develop a cost-effective alternative to noble metal catalysts for photocatalysis, we synthesized a series of bimetallic Co-Ni nanoalloys on core-shelled SiO2@TiO2 nanostructures via a chemical reduction approach. The research demonstrates the photocatalytic behaviour of the Co-Ni alloy-enhanced SiO2@TiO2 (ST-Co, Ni) hybrid nanocatalyst, focusing on its crystalline structures, morphological shapes, chemical conditions, and optical properties, utilizing techniques such as X-ray diffraction, field emission scanning electron microscopy, UV-visible diffuse reflectance spectroscopy, photoluminescence spectroscopy, transmission electron microscope, and electrochemical analysis. The catalyst was evaluated for its effectiveness in degrading tetracycline, an overused antibiotic that persists in aquatic environments and is known for negatively impacting water quality. The Co-Ni nanoalloys were tested in various ratios (1:1, 1:2, 2:1), with the 1:1 ratio (ST-Co, Ni1:1) emerging as the most effective, achieving a degradation rate of 88.4% at pH 5 in 120 min. This optimal catalyst demonstrated superior charge carrier separation and enhanced absorption of solar radiation in the visible spectrum. Improved solar light absorption and surface plasmon resonance work in concert to promote effective charge transfer from the nanoalloys to the titania, which is probably the cause of the observed photocatalytic degradation rates. So the proposed hybrid nanocatalyst paves the way for photocatalysis and can be suitable for different photocatalytic processes.

 

Downloads

Download data is not yet available.

References

F. Saadati, N. Keramati, and M. M. Ghazi, “Influence of parameters on the photocatalytic degradation of tetracycline in wastewater: A review,” Critical Reviews in Environmental Science and Technology, vol. 46, no. 8, pp. 757-782, 2016. DOI: https://doi.org/10.1080/10643389.2016.1159093

J. W. Bennett and K.-T. Chung, “Alexander fleming and the discovery of penicillin,” 2001. DOI: https://doi.org/10.1016/S0065-2164(01)49013-7

M. Ahmadi, H. R. Motlagh, N. Jaafarzadeh, A. Mostoufi, R. Saeedi, G. Baregar, and S. Jorfi, “Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite,” Journal of Environmental Management, vol. 186, pp. 55-63, 2017. DOI: https://doi.org/10.1016/j.jenvman.2016.09.088

T. H. Grossman, “Tetracycline antibiotics and resistance,” Cold Spring Harb Perspect Medicine, vol. 6, no. 4, p. a025387, 2016. DOI: https://doi.org/10.1101/cshperspect.a025387

S. Wu, H. Hu, Y. Lin, J. Zhang, and Y. H. Hu, “Visible light photocatalytic degradation of tetracycline over TiO2,” Chemical Engineering Journal, vol. 382, p. 122842, 2020. DOI: https://doi.org/10.1016/j.cej.2019.122842

P. K. Sahu, A. Champati, A. Pradhan, N. K. Sahoo, and B. Naik, “Monoclinic ZrO2 nanospheres supported nitrogen-enriched carbon nitride nanosheets for efficient photodegradation of ciprofloxacin,” Journal of Nanoparticle Research, vol. 26, no. 11, p. 261, 2024. DOI: https://doi.org/10.1007/s11051-024-06176-z

L.-A. P. Thi, S. C. Panchangam, H.-T. Do, and V.-H. Nguyen, “Prospects and challenges of photocatalysis for degradation and mineralization of antiviral drugs,” Nanostructured Photocatalysts, pp. 489-517, 2021. DOI: https://doi.org/10.1016/B978-0-12-823007-7.00012-2

S. Nagarajan, N. C. Skillen, F. Fina, G. Zhang, C. Randorn, L. A. Lawton, J. T. S. Irvine, and P. K. J. Robertson, “Comparative assessment of visible light and UV active photocatalysts by hydroxyl radical quantification,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 334, pp. 13-19, 2017. DOI: https://doi.org/10.1016/j.jphotochem.2016.10.034

J. Liu, G. Dong, J. Jing, S. Zhang, Y. Huang, and W. Ho, “Photocatalytic reactive oxygen species generation activity of TiO2 improved by the modification of persistent free radicals,” Environmental Science: Nano, vol. 8, no. 12, pp. 3846-3854, 2021. DOI: https://doi.org/10.1039/D1EN00832C

J. W. Leem, S.-R. Kim, K.-H. Choi, and Y. L. Kim, “Plasmonic photocatalyst-like fluorescent proteins for generating reactive oxygen species,” Nano Convergence, vol. 5, pp. 1-14, 2018. DOI: https://doi.org/10.1186/s40580-018-0140-7

X. Li, G. Fang, T. Wu, Q. Tian, Q. Yang, and Z. Chen, “Sunlight-driven superoxide radicals generation from double-modified carbon nitride for efficient lignin β-O-4 bonds photocleavage,” Applied Surface Science, vol. 635, p. 157717, 2023. DOI: https://doi.org/10.1016/j.apsusc.2023.157717

J. Wen, J. Xie, X. Chen, and X. Li, “A review on g-C3N4-based photocatalysts,” Applied Surface Science, vol. 391, pp. 72-123, 2017. DOI: https://doi.org/10.1016/j.apsusc.2016.07.030

A. Subhadarshini, E. Subudhi, P. G. R. Achary, S. A. Behera, N. Parwin, and B. Nanda, “ZIF-8 supported Ag3PO4/g-C3N4 a Double Z-scheme heterojunction: An efficient photocatalytic, antibacterial and hemolytic nanomaterial,” Journal of Water Process Engineering, vol. 65, p. 105901, 2024. DOI: https://doi.org/10.1016/j.jwpe.2024.105901

S. Mohanty, P. Babu, K. Parida, and B. Naik, “Surface-plasmon-resonance-induced photocatalysis by core-shell SiO2@Ag NCs@Ag3PO4 toward water-splitting and phenol oxidation reactions,” Inorganic Chemistry, vol. 58, no. 15, pp. 9643-9654, 2019. DOI: https://doi.org/10.1021/acs.inorgchem.9b00218

J. Zhang, G. Yu, C. Yang, and S. Li, “Recent progress on S-scheme heterojunction strategy enabling polymer carbon nitrides C3N4 and C3N5 enhanced photocatalysis in energy conversion and environmental remediation,” Current Opinion in Chemical Engineering, vol. 45, p. 101040, 2024. DOI: https://doi.org/10.1016/j.coche.2024.101040

C. Liu, J. Zhang, W. Wang, L. Chen, and M. Zhu, “Progress in the synthesis and applications of N-rich carbon nitride (C3N5)-based catalysts in environmental and energy catalysis,” Surfaces and Interfaces, vol. 42, p. 103491, 2023. DOI: https://doi.org/10.1016/j.surfin.2023.103491

A. K. Ganguli, A. Das, and K. Natarajan, “Core-shell type semiconducting heterostructures for visible light photocatalysis,” Chemical Record, vol. 20, no. 5, pp. 371-388, 2020. DOI: https://doi.org/10.1002/tcr.201900040

M. Maniyazagan, P. Naveenkumar, H.-W. Yang, H. Zuhaib, W. S. Kang, and S.-J. Kim, “Hierarchical SiO2@ FeCo2O4 core--shell nanoparticles for catalytic reduction of 4-nitrophenol and degradation of methylene blue,” Journal of Molecular Liquids, vol. 365, p. 120123, 2022. DOI: https://doi.org/10.1016/j.molliq.2022.120123

P. Babu, H. Park, and J. Y. Park, “Surface chemistry of graphitic carbon nitride: doping and plasmonic effect, and photocatalytic applications,” Surface Science and Technology, vol. 1, no. 1, p. 29, 2023. DOI: https://doi.org/10.1007/s44251-023-00026-1

N. Hikmah, N. F. Idrus, J. Jai, and A. Hadi, “Synthesis and characterization of silver-copper core-shell nanoparticles using polyol method for antimicrobial agent,” in IOP conference series: Earth and environmental science, 2016, p. 12050. DOI: https://doi.org/10.1088/1755-1315/36/1/012050

P. K. Sahu, A. Champati, A. Pradhan, and B. Naik, “Design and development of nanostructured photocatalysts for large-scale solar green hydrogen generation,” Sustainable Energy & Fuels, vol. 8, no. 9, pp. 1872-1917, 2024. DOI: https://doi.org/10.1039/D4SE00056K

H.-Y. Zhu, M.-T. Liu, G. Wang, R.-R. Du, H.-Y. Zhao, H. Lu, S.-Q. Yang, S. Tang, Z.-J. Guo, J. Yang, C.-Z. Zhu, and F. Yang, “Constructing core@ shell structured photothermal nanosphere with thin carbon layer confined Co-Mn bimetals for pollutant degradation and solar interfacial water evaporation,” Rare Metals, vol. 43, no. 4, pp. 1686-1701, 2024. DOI: https://doi.org/10.1007/s12598-023-02499-3

H. Lai, W. Xiao, S. Yi-Wang, T. Song, B. Long, S. Yin, A. Ali, and G.-J. Deng, “Plasmon-induced carrier separation boosts high-selective photocatalytic CO2 reduction on dagger-axe-like Cu@ Co core--shell bimetal,” Chemical Engineering Journal, vol. 417, no. 18, p. 129295, 2021. DOI: https://doi.org/10.1016/j.cej.2021.129295

C.-W. Kang, and H. Kolya, “Green synthesis of Ag-Au bimetallic nanocomposites using waste tea leaves extract for degradation congo red and 4-Nitrophenol,” Sustainability, vol. 13, no. 6, p. 3318, 2021. DOI: https://doi.org/10.3390/su13063318

S. Mishra, N. Chakinala, A. G. Chakinala, and P. K. Surolia, “Photocatalytic degradation of methylene blue using monometallic and bimetallic Bi-Fe doped TiO2,” Catalysis Communications, vol. 171, p. 106518, 2022. DOI: https://doi.org/10.1016/j.catcom.2022.106518

N. Talreja, S. Afreen, M. Ashfaq, D. Chauhan, A. C. Mera, C. A. Rodriguez, and R. V. Mangalaraja, “Bimetal (Fe/Zn) doped BiOI photocatalyst: An effective photodegradation of tetracycline and bacteria,” Chemosphere, vol. 280, p. 130803, 2021. DOI: https://doi.org/10.1016/j.chemosphere.2021.130803

S. Li, C. You, K. Rong, C. Zhuang, X. Chen, and B. Zhang, “Chemically bonded Mn0. 5Cd0. 5S/BiOBr S-scheme photo-catalyst with rich oxygen vacancies for improved photocatalytic decontamination performance,” Advanced Powder Materials, vol. 3, no. 3, p. 100183, 2024. DOI: https://doi.org/10.1016/j.apmate.2024.100183

C. Shen, X. Li, B. Xue, D. Feng, Y. Liu, F. Yang, M. Zhang, and S. Li, “Surface plasmon effect combined with S-scheme charge migration in flower-like Ag/Ag6Si2O7/Bi12O17Cl2 enables efficient photocatalytic antibiotic degradation,” Applied Surface Science, vol. 679, p. 161303, 2025. DOI: https://doi.org/10.1016/j.apsusc.2024.161303

S. Li, C. You, Q. Xue, Y. Zhao, F. Yang, Y. Liu, L. Bai, M. Zhang, and C. Zhuang, “Carbon quantum dots and interfacial chemical bond synergistically modulated S-scheme Mn0.5Cd0.5S/ BiOBr photocatalyst for efficient water purification,” Journal of Materials Science & Technology, vol. 214, pp. 255-265, 2025. DOI: https://doi.org/10.1016/j.jmst.2024.07.015

Preeti, S. Mishra, N. Chakinala, A. G. Chakinala, and P. K. Surolia, “Bimetallic Bi/Zn decorated hydrothermally synthesized TiO2 for efficient photocatalytic degradation of nitrobenzene,” Catalysis Communications., vol. 172, p. 106538, 2022. DOI: https://doi.org/10.1016/j.catcom.2022.106538

P. Babu, and B. Naik, “Cu--Ag bimetal alloy decorated SiO2 @TiO2 hybrid photocatalyst for enhanced H2 evolution and phenol oxidation under visible light,” Inorganic Chemistry., vol. 59, no. 15, pp. 10824-10834, 2020. DOI: https://doi.org/10.1021/acs.inorgchem.0c01325

P. Babu, S. R. Dash, and K. Parida, “Mechanistic insight the visible light driven hydrogen generation by plasmonic Au-Cu alloy mounted on TiO2@ B-doped g-C3N4 heterojunction photocatalyst,” Journal of Alloys and Compounds, vol. 909, p. 164754, 2022. DOI: https://doi.org/10.1016/j.jallcom.2022.164754

S. Ikeda, H. Kobayashi, Y. Ikoma, T. Harada, T. Torimoto, B. Ohtani, and M. Matsumura, “Size-selective photocatalytic reactions by titanium (IV) oxide coated with a hollow silica shell in aqueous solutions,” Physical Chemistry Chemical Physics, vol. 9, no. 48, pp. 6319-6326, 2007. DOI: https://doi.org/10.1039/b709891j

Y. Ren, M. Chen, Y. Zhang, and L. Wu, “Fabrication of rattle-type TiO2/SiO2 core/shell particles with both high photo-activity and UV-shielding property,” Langmuir, vol. 26, no. 13, pp. 11391-11396, 2010. DOI: https://doi.org/10.1021/la1008413

D. Burak, J. H. Han, J. S. Han, I. S. Kim, M. A. Rahman, J. K. W. Yang, and S.-H. Cho, “Controlling TiO2 photocatalytic behaviour via perhydropolysilazane-derived SiO2 ultrathin shell,” Nanoscale, vol. 16, no. 47, pp. 21960-21969, 2024. DOI: https://doi.org/10.1039/D4NR03566F

B. K. Mutuma, X. Mathebula, I. Nongwe, B. P. Mtolo, B. J. Matsoso, R. Erasmus, Z. Tetana, and N. J. Coville, “Unravelling the interfacial interaction in mesoporous SiO2@nickel phyllosilicate/TiO2 core--shell nanostructures for photocatalytic activity,” Beilstein Journal of Nanotechnology, vol. 11, no. 1, pp. 1834-1846, 2020. DOI: https://doi.org/10.3762/bjnano.11.165

B. R. Gomes, J. L. Lopes, L. Coelho, M. Ligonzo, M. Rigoletto, G. Magnacca, and F. Deganello, “Development and upscaling of SiO2@TiO2 core-shell nanoparticles for methylene blue removal,” Nanomaterials, vol. 13, no. 16, p. 2276, 2023. DOI: https://doi.org/10.3390/nano13162276

M. Dolatyari, M. Tahmasebi, S. Dolatyari, A. Rostami, A. Zarghami, A. Yadav, and A. Klein, “Core/Shell ZnO/TiO2, SiO2/TiO2, Al2O3/TiO2, and Al1.9Co0.1O3/TiO2 Nanoparticles for the Photodecomposition of Brilliant Blue E-4BA,” Inorganics, vol. 12, no. 11, p. 281, 2024. DOI: https://doi.org/10.3390/inorganics12110281

N. Jumrus, N. Thepthip, R. Siriariyachai, A. Panthawan, W. Sroila, E. Kantarak, N. Jhuntama, W. Thongpan, T. Kumpika, P. Singjai, and W. Thongsuwan, “Optimizing drying time of lacquer-based MTCS-modified SiO2-TiO2 coatings for enhanced mechanical durability, superhydrophobicity and photocatalytic activity,” Applied Surface Science, vol. 680, p. 161444, 2025. DOI: https://doi.org/10.1016/j.apsusc.2024.161444

R. P. Galhenage, H. Yan, S. A. Tenney, N. Park, G. Henkelman, P. Albrechi, D. Mullins, and D. Chen, “Understanding the nucleation and growth of metals on TiO2: Co compared to Au, Ni, and Pt,” The Journal of Physical Chemistry C, vol. 117, no. 14, pp. 7191-7201, 2013. DOI: https://doi.org/10.1021/jp401283k

A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surface Science Reports, vol. 63, no. 12, pp. 515-582, 2008. DOI: https://doi.org/10.1016/j.surfrep.2008.10.001

T. S. Lilge, A. R. N. Stigger, C. D. Fernandes, L. T. Gularte, C. W. Raubach, S. da S. Cava, P. L. G. Jardim, M. E. G. Valerio, and M. L. Moreira, “Increase of Voc using heterojunctions of BaTiO3 without sensitization,” Ceramics International, vol. 46, no. 4, pp. 4907-4913, 2020. DOI: https://doi.org/10.1016/j.ceramint.2019.10.227

X. Chen, and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications,” Chemical Reviews, vol. 107, no. 7, pp. 2891-2959, 2007. DOI: https://doi.org/10.1021/cr0500535

M. Kosmulski, “The pH dependent surface charging and points of zero charge. X. Update,” Advances in Colloid and Interface Science, vol. 319, p. 102973, 2023. DOI: https://doi.org/10.1016/j.cis.2023.102973

D. O. Antonov, D. P. Tambasova, A. B. Shishmakov, I. A. Kirilyuk, and E. G. Kovaleva, “Acidic and electrosurface properties of binary TiO2-SiO2 xerogels using EPR of pH-sensitive nitroxides,” Gels, vol. 7, no. 3, p. 119, 2021. DOI: https://doi.org/10.3390/gels7030119

M. Kosmulski, “The pH dependent surface charging and points of zero charge. IX. update,” Advances in Colloid and Interface Science, vol. 296, p. 102519, 2021. DOI: https://doi.org/10.1016/j.cis.2021.102519

P. Pu, H. Cachet, N. Laidani, and E. M. M. Sutter, “Influence of pH on surface states behavior in TiO2 nanotubes,” Journal of Physical Chemistry C, vol. 116, no. 42, pp. 22139-22148, 2012. DOI: https://doi.org/10.1021/jp3060312

L. Wang, G. Xie, X. Mi, B. Zhang, Y. Du, Q. Zhu, and Z. Yu, “Surface-modified TiO2@SiO2 nanocomposites for enhanced dispersibility and optical performance to apply in the printing process as a pigment,” ACS omega, vol. 8, no. 22, pp. 20116-20124, 2023. DOI: https://doi.org/10.1021/acsomega.3c02679

M. Zhang, M. Liu, Y. Jiang, J. Li, and Q. Chen, “Synthesis of immobilized CdS/TiO2 nanofiber heterostructure photocatalyst for efficient degradation of toluene,” Water, Air, & Soil Pollution, vol. 231, pp. 1-11, 2020. DOI: https://doi.org/10.1007/s11270-020-4461-x

W.-L. Li, Q. Tang, L.-L. Gao, Y.-Q. Shen, B. Yu, and H.-L. Cong, “Preparation of multilayered core-shell TiO2@ DR@ SiO2 composites and investigation of its photocatalytic performance,” Integrated Ferroelectrics, vol. 190, no. 1, pp. 142-148, 2018. DOI: https://doi.org/10.1080/10584587.2018.1457351

H. Lu, J. Tournet, K. Dastafkan, Y. Liu, Y. H. Ng, S. K. Karuturi, C. Zhao, and Z. Yin, “Noble-metal-free multicomponent nano-integration for sustainable energy conversion,” Chemical Reviews, vol. 121, no. 17, pp. 10271-10366, 2021. DOI: https://doi.org/10.1021/acs.chemrev.0c01328

J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D. W. Bahnemann, “Understanding TiO2 photo-catalysis: mechanisms and materials,” Chemical Reviews, vol. 114, no. 19, pp. 9919-9986, 2014. DOI: https://doi.org/10.1021/cr5001892

D. B. Hamal, and K. J. Klabunde, “Heterogeneous photocatalysis over high-surface-area silica-supported silver halide photocatalysts for environmental remediation,” in Nanoscale materials in chemistry: Environmental applications, ACS Publications, 2010, pp. 191-205. DOI: https://doi.org/10.1021/bk-2010-1045.ch011

C. Liu, D. Yang, Y. Jiao, Y. Tian, Y. Wang, and Z. Jiang, “Biomimetic synthesis of TiO2--SiO2--Ag nanocomposites with enhanced visible-light photocatalytic activity,” ACS Applied Materials & Interfaces, vol. 5, no. 9, pp. 3824-3832, 2013. DOI: https://doi.org/10.1021/am4004733

H. Abdullah, and D.-H. Kuo, “Photocatalytic performance of Ag and CuBiS2 nanoparticle-coated SiO2@TiO2 composite sphere under visible and ultraviolet light irradiation for azo dye degradation with the assistance of numerous nano p--n diodes,” Journal of Physical Chemistry C, vol. 119, no. 24, pp. 13632-13641, 2015. DOI: https://doi.org/10.1021/acs.jpcc.5b01970

J. E. Lee, S. Bera, Y. S. Choi, and W. I. Lee, “Size-dependent plasmonic effects of M and M@SiO2 (M= Au or Ag) deposited on TiO2 in photocatalytic oxidation reactions,” Applied Catalysis B: Environmental, vol. 214, pp. 15-22, 2017. DOI: https://doi.org/10.1016/j.apcatb.2017.05.025

C. Hu, Y. Tang, Z. Jiang, Z. Hao, H. Tang, and P. K. Wong, “Characterization and photocatalytic activity of noble-metal-supported surface TiO2/SiO2,” Applied Catalysis A: General, vol. 253, no. 2, pp. 389-396, 2003. DOI: https://doi.org/10.1016/S0926-860X(03)00545-3

J. Matos, B. Llano, R. Montaña, P. S. Poon, and M. C. Hidalgo, “Design of Ag/and Pt/TiO2-SiO2 nanomaterials for the photo-catalytic degradation of phenol under solar irradiation,” Environmental Science and Pollution Research vol. 25, pp. 18894-18913, 2018. DOI: https://doi.org/10.1007/s11356-018-2102-3

J.-J. Chen, J. C. S. Wu, P. C. Wu, and D. P. Tsai, “Improved photocatalytic activity of shell-isolated plasmonic photocatalyst Au@SiO2/TiO2 by promoted LSPR,” Journal of Physical Chemistry C, vol. 116, no. 50, pp. 26535-26542, 2012. DOI: https://doi.org/10.1021/jp309901y

Y. Zhang, J. Chen, H. Tang, Y. Xiao, S. Qiu, S. Li, and S. Cao, “Hierarchically-structured SiO2-Ag@TiO2 hollow spheres with excellent photocatalytic activity and recyclability,” Journal of Hazardous Materials, vol. 354, pp. 17-26, 2018. DOI: https://doi.org/10.1016/j.jhazmat.2018.04.047

R. Lee, Y. Kumaresan, S. Y. Yoon, S. H. Um, I. K. Kwon, and G. Y. Jung, “Design of gold nanoparticles-decorated SiO2 @TiO2 core/shell nanostructures for visible light-activated photocatalysis,” RSC Advances, vol. 7, no. 13, pp. 7469-7475, 2017. DOI: https://doi.org/10.1039/C6RA27591E

N. Fu, X. Ren, and J. Wan, “Preparation of Ag-coated SiO2@ TiO2 core-shell nanocomposites and their photocatalytic applications towards phenol and methylene blue degradation,” Journal of Nanomaterials., vol. 2019, no. 1, p. 8175803, 2019. DOI: https://doi.org/10.1155/2019/8175803

B. Naik, S. M. Kim, C. H. Jung, S. Y. Moon, S. H. Kim, and J. Y. Park, “Enhanced H2 generation of Au-loaded, nitrogen-doped TiO2 hierarchical nanostructures under visible light,” Advanced Materials Interfaces vol. 1, no. 1, p. 1300018, 2014. DOI: https://doi.org/10.1002/admi.201300018

X. Tian, X. Cai, Z. Zeng, Y. He, X. Xu, L. Lei, C. Xu, X. Xu, Y. Xu, P. Li, and X. Zhang, "Mn doping and core-shell engineering of silane-modified Mn-TiO2@SiO2 nanoparticles with drastically reduced photocatalytic activity for transparent UV-shielding hybrid materials,” Chemical Engineering Journal, vol. 498, p. 155304, 2024. DOI: https://doi.org/10.1016/j.cej.2024.155304

Downloads

Published

2025-05-30

How to Cite

[1]
P. K. SAHU, “Synergistic effects of Co-Ni nanoalloys on SiO\(_{2}\)@TiO\(_{2}\): A novel approach to photocatalytic tetracycline degradation”, J Met Mater Miner, vol. 35, no. 2, p. e2241, May 2025.

Issue

Section

Original Research Articles

Categories