Pozzolanic activity of rice husk ash: Comparison of various electrical methods
Keywords:
Rice husk ash, Impedance spectroscopy, Pozzolanic activity, Electrical conductivityAbstract
The great abundance of rice husk ash (RHA) as low-cost agricultural waste in Thailand makes it the most suitable material for cement-based applications. However, the use of RHA as a supplementary cementitious material (SCM) is not yet widespread in Thailand due to the poor pozzolanic activity of most agricultural RHA. Most RHA is incinerated at too high temperatures (usually in excess of 1000°C) or under uncontrolled conditions as biomass fuel. This reduces the amount of amorphous SiO2 and hence worsens the pozzolanic activity of the resulting RHA. To enhance the use of RHA as an SCM in Thailand, a proper method to evaluate its pozzolanic activity is necessary. In this work, the two most simple electrical methods proposed in the literature to evaluate the pozzolanic activity of different pozzolans (not necessarily RHA) will be applied to RHA. Their applicability is discussed in comparison with the strength activity index method, and other physical properties believed to influence the pozzolanic activity of RHA.Downloads
References
Luxán, M.P., Madruga, F. and Saavedra, J. 1989. Rapid evaluation of pozzolanic activity of natural products by conductivity measurement. Cem. Concr. Res. 19(1) : 63-68.
McCarter, W.J. and Tran, D. 1996. Monitoring pozzolanic activity by direct activation with calcium hydroxide. Constr. Build. Mater. 10(3) : 179-184.
Nair, D.G., Jagadish, K.S. and Fraaij, A. 2006. Reactive pozzolanas from rice husk ash: An alternative to cement for rural housing. Cem. Concr. Res. 36(6) : 1062-1071.
Nehdi, M., Dequette, J. and Damatty, A.E. 2003. Performance of rice husk ash produced using a new technology as a mineral admixture in concrete. Cem. Concr. Res. 33(8) : 1203-1210.
Payá, J., Monzó, J., Borrachero, M.V., Mellado, A. and Ordoñez, L.M. 2001. Determination of amorphous silica in rice husk ash by a rapid analytical method. Cem. Concr. Res. 31(2) : 227-231.
Sánchez de Rojas, M.I., Rivera, J. and Frías, M. 1999. Influence of microsilica state on pozzolanic reaction rate. Cem. Concr. Res. 29(6) : 945-949.
Tashiro, C., Ikeda, K. and Inoue, Y. 1994. Evaluation of pozzolanic activity by the electric resistance measurement method. Cem. Concr. Res. 24(6): 1133-1139.
UNE-EN 196-2: 1996. Métodos de ensayo de cementos: Parte2. Análisis Químico de cementos.
UNE 80225: 1993. Ex, Métodos de ensayo de cementos. Análisis Químico. Determinacíon del dioxide de silicio (SiO2) reactivo en los cementos, en las puzolanas y en cenizas volantes.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Journal of Metals, Materials and Minerals
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.