Microstructure evolution and mechanical properties of calcined kaolin processing waste-based geopolymers in the presence of different alkali activator content by pressing and casting
Abstract
In this work, microstructure evolution and mechanical properties of calcined kaolin processing waste-based geopolymers in the presence of low and high contents alkali activators were studied. Lower and higher contents of alkali activators were employed to synthesize geopolymers by pressing and casting methods, respectively. Chemical bonding analysis, microstructure/elemental analysis, phase composition analysis, and compressive strength test were performed using FTIR, SEM/EDX, XRD, and universal mechanical testing machine, respectively. Findings showed that geopolymer with the low content of alkali activator formed by pressing (pressed geopolymer) might promote in the higher degree of geopolymerization because of higher compacted matrices but geopolymer with the high content of alkali activator formed by casting (cast geopolymer) would hinder the degree of geopolymerization reaction. Microstructure of pressed geopolymer showed a denser structure, no cracks, and lower porosity in comparison to the cast geopolymer. The geopolymers contained the lower and higher contents of alkali activators resulted in the formation of geopolymeric gels, and of sodium carbonate, sodium hydroxide, and zeolite phases, respectively. Compressive strength of pressed geopolymer was approximately 24.39% higher than that of cast geopolymer. Highest compressive strength values of pressed and cast geopolymers were 27.74 and 22.30 MPa, respectively. Thus, pressed geopolymer contained a lower content of alkali activator and had higher compressive strength in comparison to the cast geopolymers contained a higher content of alkali activator.Downloads
Download data is not yet available.
Downloads
Published
2020-09-29
How to Cite
[1]
S. Prasanphan, A. Wannagon, T. Kobayashi, and S. Jiemsirilers, “Microstructure evolution and mechanical properties of calcined kaolin processing waste-based geopolymers in the presence of different alkali activator content by pressing and casting”, J Met Mater Miner, vol. 30, no. 3, Sep. 2020.
Issue
Section
Original Research Articles
License
Copyright (c) 2020 Journal of Metals, Materials and Minerals
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.