Structural, magnetic and transport properties of Ca and Sr doped Lanthanum manganites

Authors

  • Sunita KESHRI Department of Physics, Birla Institute of Technology, Mesra, RANCHI, 835215, INDIA
  • Shailendra Rajput Department of Physics, Shri Krishna University, CHHATARPUR, 471001, INDIA
  • Sonali BISWAS Department of Physics, Birla Institute of Technology, Mesra, RANCHI, 835215, INDIA
  • Leena Joshi Department of Physics, St. Xavier’s College Bombay, MUMBAI, 400001, INDIA
  • Wojciech SUSKI Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, WROCLAW 2, 50-950, POLAND
  • Piotr WIŚNIEWSKI Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, WROCLAW 2, 50-950, POLAND

Keywords:

Manganite, Resistivity, Magnetization, Thermoelectric power

Abstract

This article presents a comparative study for the effect of average A-site cation size on the structural, transport and magnetic properties of Lanthanum manganites. Three polycrystalline colossal magneto-resistive compounds were synthesized using standard solid state reaction method. The electrical resistivity data were analyzed employing standard two-phase model to understand the conduction mechanism. The resistance of polycrystalline ceramic depends on the intragrain resistance (intrinsic resistance) and the intergrain or grain-boundary resistance (extrinsic resistance). The substitution of Sr ions at La-site provides higher magnetic and metal-insulator transitions as compared to Ca ions. The combined substitution of Ca and Sr ions at La-site offers nearby room temperature magnetic and metal-insulator transitions. Irreversibility in the temperature dependent DC magnetization is observed in the zero-field-cooled and field-cooled measurements. It is noticed that the larger average radius of the A-site cations possesses higher magnetic and metal-insulator transition temperatures. Temperature dependent thermoelectric power curves show a hump like behavior, which indicates a smooth transition from the low-temperature metallic behavior to high-temperature semiconductor-like behavior.

Downloads

Download data is not yet available.

References

Y. Tokura, “Critical features of colossal magnetoresistive manganites,” Reports on Progress in Physics, vol. 69, p. 797, 2006.

C. B. Larsen, S. Samothrakitis, A. D. Fortes, A. O. Ayaş, M. Akyol, A. Ekicibil, and M. Laver, “Basal plane ferromagnetism in the rhombohedral manganite La0.85Ag0.15MnO3+δ,” Journal of Magnetism and Magnetic Materials, vol. 498, p. 166192, 2020.

M. K. Verma, N. D. Sharma, S. Sharma, N. Choudhary, and D. Singh, “High magnetoresistance in Lao,gNdogCao,-A, MnO (A= Ca, Li, Na, K) CMR manganites: Correlation between their magnetic and electrical properties,” Materials Research Bulletin, vol. 125, pp. 10813, 2020;.

S. Biswas, and S. Keshri, “Large magnetocaloric effect near room temperature in La0.67(Sr, K/Pb)0.33MnO3 manganite nanomaterials,” Journal of Materials Science: Materials in Electronics, vol. 31 pp. 21896-21912, 2020.

L. Joshi, S. S. Rajput, and S. Keshri, “Structural and magneto-transport properties of LCMO–STO composites,” Phase Transitions, vol. 83, pp. 482, 2010.

H. Nakatsugawa, M. Saito, and Y. Okamoto, “High-temperature thermoelectric properties of perovskite-type Pr0.9Sr0.1Mn1−xFexO3 (0 ≤ x ≤ 1),” Journal of Electronic Materials, vol. 46, pp. 3262-3272, 2017.

C. A. Taboada-Moreno, F. Sánchez-De Jesús, F. Pedro-García, C. A. Cortés-Escobedo, J.A. Betancourt-Cantera, M. Ramírez-Cardona, A. M. Bolarín-Miró, “Large magnetocaloric effect near to room temperature in Sr doped La0.7Ca0.3MnO3,” Journal of Magnetism and Magnetic Materials, vol. 496, p.165887, 2020.

C. Zener, “Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with

perovskite structure,” Physical Review, vol. 82, p. 403, 1951.

T. Endo, T. Goto, Y. Inoue, and Y. Koyama, “Disordered Jahn–Teller-Polaron States in the Simple Perovskite Manganite Ca1− xLaxMnO3 with 0.15≦ x≦ 0.28,” Journal of the Physical Society of Japan, vol. 88, p. 074708, 2019.

A. Anshul, S. S. Amritphale, S. Kaur, N. Chandra, A. K. Gupta, and R. Yadav, “Wide‐Range Colossal Magnetoresistance in La0.7A0.3MnO3 (A= Sr, Ag) Thin Films,” International Journal of Applied Ceramic Technology, vol. 9, pp. 214-220, 2012.

G. Channagoudra, A. K. Saw, and V. Dayal, “Low temperature spin polarized tunnelling magneto-resistance in La1-xCaxMnO3 (x = 0.375 and 0.625) nanoparticles,” Emergent Materials, vol. 3, pp. 45-49, 2020.

H. Felhi, M. Smari, R. Hamdi, T. Mnasri, M. Bekri, and E. Dhahri, “Investigation of the Structural, Magnetic, Magnetocaloric, Electrical Properties, and Spin-Polarized Tunneling Effect of the La0.5Ca0.3Te0.2MnO3 System,” Journal of Superconductivity and Novel Magnetism, vol. 32, pp. 463-473, 2019.

O. Kaman, Z. Jirák, J. Hejtmánek, A. Ndayishimiye, M. Prakasam, and G. Goglio, “Tunneling magnetoresistance of hydrothermally sintered La1-xSrxMnO3-silica nanocomposites,” Journal of Magnetism and Magnetic Materials, vol. 479, pp. 135-143, 2019.

X. Liu, H. Zhu, and Y. Zhang, “Conductive mechanism in manganite materials,” Physical Review B, vol. 65, p. 024412, 2001.

W. Hizi, H. Rahmouni, M. Gassoumi, K. Khirouni, and S. Dhahri, “Transport properties of La0.9Sr0.1MnO3 manganite,” The European Physical Journal Plus, vol. 135, no. 6, pp. 1-13, 2020.

R. Thaljaoui, and D. Szewczyk, “Electrical and thermal properties of Pr0.6Sr0.4−xAgxMnO3 (x = 0.05 and 0.1) manganite,” Journal of Materials Science, vol. 55, no. 16, pp. 6761-6770, 2020.

B. Panda, K. L. Routray, and D. Behera, “Studies on conduction mechanism and dielectric properties of the nano-sized La0.7Ca0.3MnO3 (LCMO) grains in the paramagnetic state,” Physica B: Condensed Matter, vol. 583, p.411967, 2020.

T. M. Tank, M. Prajapat, D. S. Rana, A. Bodhaye, Y. M. Mukovskii, and S. P. Sanyal, “Signature of Ferromagnetic Phase at Low Temperature in Low-Doped La0.88Ca0.12 MnO3 Single Crystal,” Journal of Superconductivity and Novel Magnetism, vol. 32, no. 10, pp. 3265-3272, 2019.

S. Keshri, and S. S. Rajput, “Effect of BTO addition on the structural and magnetoresistive properties of LSMO,” Phase Transitions, vol. 87, pp. 136-147, 2014.

R. A. Young, The Rietveld Method. New York: Oxford University Press, Inc., 1993.

FullProf Suite. https://www.ill.eu/sites/fullprof/

L. S. Ewe, A. Jemat, K. P. Lim, and R. Abd-Shukor, “Electrical, magnetoresistance and magnetotransport properties of Nd1-x SrxMnO3,” Physica B: Condensed Matter, vol. 416, pp. 17-22, 2013.

M. Gupta, R. K. Kotnala, W. Khan, A. Azam, and A. H. Naqvi, “Magnetic, transport and magnetoresistance behavior of Ni doped La0.67Sr0.33Mn1−xNixO3 (0.00 ≤ x ≤0.09) system,” Journal of Solid State Chemistry, vol. 204, pp. 205-212, 2013.

P. R. Sagdeo, S. Anwar, N. P. Lalla, “Powder X-ray diffraction and Rietveld analysis of La1−xCaxMnO3 (0 < x < 1),” Powder Diffraction, vol. 21, pp. 40-44, 2006.

M. S. Islam, D. T. Hanh, F. A. Khan, M. A. Hakim, D. L. Minh, N. N. Hoang, N. H. Hai, and N. Chau, “Giant magneto-caloric effect around room temperature at moderate low field variation in La0.7(Ca1−xSrx)0.3MnO3 perovskites,” Physica B: Condensed Matter, vol. 404, pp. 2495-2498, 2009.

Z. Chen, T. A. Tyson, K. H. Ahn, Z. Zhong and J. Hu, “Origin of the non-linear pressure effects in perovskite manganites: Buckling of Mn-O-Mn bonds and Jahn-Teller distortion of the MnO6 octahedra induced by pressure,” Journal of Magnetism and Magnetic Materials, vol. 322, pp. 3049-3052, 2010.

W. J. Lu, X. Luo, C. Y. Hao, W. H. Song, and Y. P. Sun, “Magnetocaloric effect and Griffiths-like phase in La0.67Sr0.33 MnO3 nanoparticles,” Journal of Applied Physics, vol. 104, pp. 113908, 2008.

M. Oumezzine, S. Kallel, O. Peña, N. Kallel, T. Guizouarn, F. Gouttefangeas, and M. Oumezzine, “Correlation between structural, magnetic and electrical transport properties of barium vacancies in the La0.67Ba0.33−xMnO3 (x = 0, 0.05, and 0.1) manganite,” Journal of Alloys and Compounds, vol. 582, pp. 640-646, 2014.

L. Yang, Q. Duanmu, L. Hao, X. Wang, Y. Wei, Z. Zhang, and H. Zhu, “Structural, magnetic and electrical properties of double-doped manganites Y0.5+ySr0.5−yMn1−yCryO3 (0 ≤ y ≤ 0.5),” Journal of Magnetism and Magnetic Materials, vol. 341, pp. 30-35, 2013.

M. Nasri, M. Triki, E. Dhahria, E. K. Hlil, and P. Lachkar, “Electrical transport and magnetoresistance properties of (1−x)La0.6Sr0.4MnO3/x(Sb2O3) composites,” Journal of Alloys and Compounds, vol. 576, pp. 404-408, 2013.

S. Keshri, L. Joshi, and S. S. Rajput, “Studies on La0.67Ca0.33 MnO3–SrTiO3 composites using two-phase model,” Journal of Alloys and Compounds, vol. 509, pp. 5796-5803, 2011.

M. Rubinstein, “Two-component model of polaronic transport,” Journal of Applied Physics, vol. 87, pp. 5019-5021, 2000.

N. Panwar, D. K. Pandya, A. Rao, K .K. Wu, N. Kaurav, Y. K. Kuo, and S. K. Agarwal, “Electrical and thermal properties of Pr2/3(Ba1−xCsx)1/3MnO3 manganites.” The European Physical Journal B, vol. 65, pp. 179-186, 2008.

N. F. Mott, and E. A. Davis, Electronic Processes in Non–Crystalline Materials. New York: Oxford University Press, Inc., 1979.

K. Sega, Y. Kuroda, and H. Sakata, “Dc conductivity of V2O5–MnO–TeO2 glasses,” Journal of materials science, vol. 33, pp. 1303-1308, 1998.

Downloads

Published

2021-12-16

How to Cite

[1]
S. . KESHRI, S. Rajput, S. . BISWAS, L. Joshi, W. . SUSKI, and P. . WIŚNIEWSKI, “Structural, magnetic and transport properties of Ca and Sr doped Lanthanum manganites”, J. Met. Mater. Miner., vol. 31, no. 4, pp. 62-68, Dec. 2021.

Issue

Section

Original Research Articles