Effects of crosslinking agent and biological properties of silk fibroin/gelatin/chitosan ternary system electrospun nanofiber mats.

Authors

  • P Siridamrong Expert Centre of Innovation Industrial Robotics and Automation, Thailand Institute of Scientific and Technological Research, Khlong Luang, Pathum Thani, 12120, Thailand
  • N Lumbikananda
  • S Swasdison
  • M Okhawilai
  • N Thamrongananskul

Abstract

In this study, electrospinning technique was used for ternary system to fabricate nanofiber mats from silk fibroin (SF):gelatin (G):chitosan (C) with various mass ratios i.e. 10:20:0, 10:20:0.5, 10:20:1, 10:20:1.5, 10:20:2, and 20:10:1. An increase in chitosan content of the mats was found to decrease average fiber diameter and with narrow size distribution. Tensile strength of SF:G:C nanofiber having greater SF content was lower than that of the fiber mat having lower SF content. The obtained fiber mats were then crosslinked by three different crosslinking agents including ethanol, glutaraldehyde and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC)/N-hydroxysuccinmide (NHS). The smooth fiber with high porosity of the nanofiber mat was observed after crosslinked using EDC/NHS agent. A less swollen fiber was noticed in the fiber mats having higher SF content. The results from in vitro study revealed the good cell adhesion and proliferation of gingival tissues. Such results indicated the potential use of SF:G:C nanofiber mats as membrane application.

Downloads

Download data is not yet available.

Downloads

Published

2019-12-26

How to Cite

[1]
P. Siridamrong, N. Lumbikananda, S. Swasdison, M. Okhawilai, and N. Thamrongananskul, “Effects of crosslinking agent and biological properties of silk fibroin/gelatin/chitosan ternary system electrospun nanofiber mats.”, J. Met. Mater. Miner., vol. 29, no. 4, Dec. 2019.

Issue

Section

Original Research Articles