Magnetic sensors and geometrical magnetoresistance: A review



Magnetic, Sensor, Geometrical, Extraordinary, Magnetoresistance


Magnetic sensing devices are of the extremely significant kind of detectors, that are used several important and useful applications. Geometrical extraordinary magnetoresistance (EMR) is the geometrical kind of magnetoresistance associated with the non-magnetic semiconductor-metal hybrid structure and influenced by geometrical shape. As a result of Lorentz force, the current path change from metal (in absence of magnetic field) to semiconductor (under the subjection of the magnetic field) in semiconductor-metal hybrid structure is the key of EMR phenomena, i.e. once the metal is placed in a semiconductor, it works as a short circuit with the majority of applied current moving through metallic inhomogeneity and the almost whole resistance of semiconductor-metal hybrid structure drops to value smaller than that of homogeneous semiconductor in absence of magnetic field, in other hands, applying of magnetic field alters the current route to be around the metallic inhomogeneity where it works as an open circuit and the whole resistance turns into a quite high magnitude relies on the geometrical form of a device. The variables govern these phenomena are metal and semiconductor conductivity, semiconductor charge carriers mobility, and device geometry. Within this review, EMR phenomena history, variables governed it, materials, and applications of EMR devices are overviewed.


Download data is not yet available.


G.R. Tschulena, and A. Lahrmann, Sensors in household appliances. Wiley-VCH, Weinheim, 2003.

I. Inasaki, and H.K. Tönshoff, Sensors in manufacturing. Wiley-VCH, Weinheim, 2001.

J. Fraden, Handbook of Modern Sensors : Physics, Designs, and Applications., 2016.

O. Gassmann, J. Hesse, and H.K. Tönshoff, Sensors applications. 6, Environmental technology. Wiley-VCH, Weinheim, 2002.

K. Kalantar-zadeh, Sensors An Introductory Course. Springer, Boston, 2013.

H. Yamasaki, Intelligent sensors. Elsevier, Amsterdam; New York, 1996.

P. Wild, Industrial sensors and applications for condition monitoring. Mechanical Engineering Publications, London, 1994.

B. Bhushan, and H. Fuchs, Applied scanning probe methods II : Scanning probe microscopy techniques. Springer, Berlin, 2006.

R. Narayanaswamy, and O.S. Wolfbeis, Optical Sensors : Industrial Environmental and Diagnostic Applications. Springer, Berlin, 2004.

H. Kopola, Intensity-modulated fibre optic sensors for robotic, medical and industrial applications. Ouluensis Universitas, Oulu, 1988.

M. Hosseini, and A.S.H. Makhlouf, Industrial Applications for Intelligent Polymers and Coatings. Springer International Publishing, Cham, 2016.

S. Nihtianov, Smart Sensors And Mems. Woodhead, S.l., 2017.

A.B. Abou Hammad, A. Elzwawy, A.M. Mansour, M.M. Alam, A.M. Asiri, M.R. Karim, M.M. Rahman, and A.M. El Nahrawy, “Detection of 3,4-diaminotoluene based on Sr0.3Pb0.7TiO3/CoFe2O4 core/ shell nanocomposite via an electrochemical approach,” New Journal of Chemistry. vol. 44(19), pp. 7941-7953, 2020.

N.A.A. Elkanzi, A.A.M. Farag, N. Roushdy, and A.M. Mansour, “Design, fabrication and optical characterizations of pyrimidine fused quinolone carboxylate moiety for photodiode applications,” Optik. vol. 216, pp.164882, 2020.

R.E. Newnham, “Transducers, sensors, and actuators,” Japanese Journal of Applied Physics. vol. 25(S1), pp. 9-14, 1986.

A.M. Mansour, I.M.E. Radaf, T.A. Hameed, and G.B. Sakr, “Investigation of Ag2HgI4 nanoparticles: Thermal phase transition and non-isothermal kinetic study,” UPB Scientific Bulletin, Series B: Chemistry and Materials Science. vol. 81(1), pp. 134-148, 2019.

Bureau of Energy Efficiency, “Basics of energy and its various forms,” General Aspects of Energy Management & Energy Audit. no. May, pp. 38-56, 2014.

J.A. Brug, T.C. Anthony, and J.H. Nickel, “Magnetic recording head materials,” MRS Bulletin. vol. 21(09), pp. 23-27, 1996.

J. Kral, “The lift-off effect in eddy currents on thickness modeling and measurement,” IEEE Transactions on Instrumentation and Measurement. vol. 62(7), pp. 2043-2049, 2013.

K. Miki and K. Masamune, “High-resolution small field-of-view magnetic resonance image acquisition system using a small planar coil and a pneumatic manipulator in an open MRI scanner,” International Journal of Computer Assisted Radiology and Surgery. vol. 10(10), pp. 1687-1697, 2015.

E. Bagalini, “Designing autonomous race car models for learning advanced topics in hard real-time system,” International Journal of Robotics Applications and Technologies (IJRAT). vol. 3(1), pp. 1-22, 2015.

P. Xu, “Optimizing the alignment of inspection data from track geometry cars,” Computer-Aided Civil and Infrastructure Engineering. vol. 30(1), pp. 19-35, 2015.

V. Ivanov, “A review of fuzzy methods in automotive engineering applications,” European Transport Research Review : An Open Access Journal. vol. 7(3), pp. 7-29, 2015.

J. Včelák and P. Kašpar, “Sensors for vector magnetometers.,” Journal of Electrical Engineering. vol. 57(8), SUPPL, pp. 178-180, 2006.

L. Tøffner-Clausen, “In-flight scalar calibration and characterisation of the Swarm magnetometry package,” Earth, Planets and Space. vol. 68(1), pp. 68-129, 2016.

J. Lenz, and S. Edelstein, “Magnetic sensors and their applications,” IEEE Sensors Journal. vol. 6(3), pp. 631-649, 2006.

H.-C. Koch, “Design and performance of an absolute 3He/Cs magnetometer,” The European Physical Journal D : Atomic, Molecular, Optical and Plasma Physics. vol. 69(8), pp. 69-202, 2015.

J.S. Markiyeh, M.R. Moniri, and A.R. Monajati, “Detection of Magnetic Anomaly Using Total Field Magnetometer,” pp. 1813-1820, 2015.

Z. Ding, “Optically pumped rubidium atomic magnetometer with elliptically polarized light,” Optik - International Journal for Light and Electron Optics. vol. 127(13), pp. 5270-5273, 2016.

T. Kobayashi, “Optically pumped atomic magnetometer,” The Journal of the Institute of Electrical Engineers of Japan. vol. 136(1), pp. 26-29, 2016.

D. Budker, and M. Romalis, “Optical magnetometry,” Nature Physics. vol. 3(4), pp. 227-234, 2007.

D. Budker, W. Gawlik, D.F. Kimball, S.M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Reviews of Modern Physics. vol. 74(4), pp. 1153-1201, 2002.

M. Sabean, Atomic Structure. Infobase Pub, New York, 2011.

F. Masci, “Evidence of underground electric current generation during the 2009 L’Aquila earthquake: Real or instrumental?,” Geophysical Research Letters. vol. 43(12), pp. 6153-6161, 2016.

H. Korth, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” Journal of Geophysical Research: Space Physics. vol. 121(8), pp. 7870-7880, 2016.

S. Fan, S. Chen, S. Zhang, X. Guo, and Q. Cao, “An improved overhauser magnetometer for Earth’s magnetic field observation,” In: J.J. Butler, X. (Jack) Xiong, and X. Gu, Eds. Proceedings of SPIE - The International Society for Optical Engineering. pp. 99721N (2016).

V. Sapunov, “Application of overhauser DNP and K optics INTERMAGNET quantum magnetometers to fundamental physics and cosmology,” Magnetic Resonance in Solids. vol. 18(2), pp. 1610 (4pp), 2016.

A.F.M. Nor, E.W. Hill, K. Birthwistle, and M.R. Parker, “Noise in NiFeCo/Cu spin valve sensors,” Sensors and Actuators A: Physical. vol. 81(1-3), pp. 67-70, 2000.

R.J.M. van de Veerdonk, P.J.L. Belien, K.M. Schep, J.C.S. Kools, C. de Nooijer, M.A.M Gijs, R. Coehoorn, and W.J.M. de Jonge, 1/f noise in anisotropic and giant magnetoresistive elements. Journal of Applied Physics J. M. Journal of Applied Physics. vol. 82(12), pp. 6152-6164, 1997.

A. Grosz, E. Paperno, S. Amrusi, and B. Zadov, “A three-axial search coil magnetometer optimized for small size, low power, and low frequencies,” IEEE SENSORS JOURNAL. vol. 11(4), pp. 1088-1094, 2011.

E.H. El-Khawas, A.A. Azab, and A.M. Mansour, “Structural, magnetic and dielectric properties of reduced graphene oxide/ La0.9Bi0.1FeO3 nanocomposites,” Materials Chemistry and Physics. vol. 241, pp. 122335, 2020.

C. Coillot and P. Leroy, “Induction magnetometers principle, modeling and ways of improvement,” Magnetic Sensors - Principles and applications. no. 1, pp. 45-64, 2012.

I. Hrvoic, “Overhauser magnetometers for measurement of the Earth’s Magnetic field,” statisch/downloads/254/Overhauser-Magnetometers.pdf, 1989.

S. Tumanski, “Induction coil sensors - a review,” Measurement Science and Technology. vol. 18(3), pp. R31-R46, 2007.

M. Vladislav, A. Grosz, and L. Klein, “Planar Hall Effect (PHE) magnetometers,” In: A. Grosz, M.J. Haji-Sheikh, and S.C. Mukhopadhyay, Eds. High Sensitivity Magnetometers, Smart Sensors, Measurement and Instrumentation 19. pp. 201-224. Springer International Publishing, Cham (2017).

K. Li and S.P. Hubbell, “High temperature superconductor transimpedance amplifiers using serially connected bi-crystal junction SQUID arrays,” IEEE Transactions on Applied Superconductivity. vol. 9(2), PART 3, pp. 4420-4423, 1999.

V. Pizzella, S. Della Penna, C. Del Gratta, and G.L. Romani, “SQUID systems for biomagnetic imaging,” Superconductor Science and Technology. vol. 14(7), pp. R79-R114, 2001.

A. Banobre, I. Padron, A.T. Fiory, and N.M. Ravindra, “Metal Diaphragm Based Magnetic Field Sensor,” vol. 1, no. October 2016, pp. 693-700, 2012.

H. Oda, J. Kawai, M. Miyamoto, I. Miyagi, M. Sato, A. Noguchi, Y. Yamamoto, J-ichi. Fujihira, N. Natsuhara, Y. Aramaki, T. Masuda, and C. Xuan, “Scanning SQUID microscope system for geological samples: system integration and initial evaluation,” Earth, Planets and Space. vol. 68(1), pp. 179-198, 2016.

E.A. Lima and B.P. Weiss, “Ultra-high sensitivity moment magnetometry of geological samples using magnetic microscopy,” Geochemistry, Geophysics, Geosystems. vol. 17(9), pp. 3754-3774, 2016.

K. Mitsuda, “TES X-ray microcalorimeters for X-ray astronomy and material analysis,” Physica C: Superconductivity and its Applications. vol. 530, pp. 93-97, 2016.

H. Paik, “Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory,” Phys. Rev. D. vol. 35(12), pp. 3551-3571, 1987.

J.E. Hirsch, “On the dynamics of the meissner effect,” Physica Scripta. vol. 91(3), p. 035801(15pp), 2016.

Y. Xu, D.D. Awschalom, and J. Nitta, Eds., Handbook of Spintronics. Springer, Dordrecht, 2016.

A. Asfour, J.-P. Yonnet, and M. Zidi, “A high dynamic range GMI current sensor,” Journal of Sensor Technology. vol. 02(04), pp. 165-171, 2012.

S.-L. Zhang, Y.-S. Chai, D.-Q. Fang, L.-C. Wang, D.-W. Xing, and J.-F. Sun, “Giant magneto-impedance effect of two paralleled amorphous microwires,” Rare Metals. vol. 35(4), pp. 344-348, 2016.

D. Yang, F. Wang, Y. Ren, Y. Zuo, Y. Peng, S. Zhou, and D. Xue, “A large magnetoresistance effect in p-n junction devices by the space-charge effect,” Advanced Functional Materials. vol. 23(23), pp. 2918-2923, 2013.

R. Popovi, and W. Heidenreich, “Magnetogalvanic sensors,” In: Sensors. pp. 43-96. Wiley-VCH Verlag GmbH, Weinheim, Germany.

I.T. Zedan, E.M. El-Menyawy, and A.M. Mansour, “Physical characterizations of 3-(4-methyl piperazinylimino methyl) rifampicin films for photodiode applications,” Silicon. vol. 11(3), pp. 1693-1699, 2019.

A.M. Mansour and I.M. El Radaf, “Structural, optical and electrical properties of CuBiS2 thin films deposited by spray pyrolysis at different deposition times,” International Journal of Microstructure and Materials Properties. vol. 14(5), pp. 419-431, 2019.

M. Nasr, A.M. Mansour, and I.M. El Radaf, “Current transport and capacitance-voltage characteristics of Sb2Se3/n-Si heterojunction diode prepared by electron beam evaporation,” Materials Research Express. vol. 6(3), pp. 036405, 2019.

A.M. El Nahrawy, A.M. Mansour, A.B. Abou Hammad, and A.R. Wassel, “Effect of Cu incorporation on morphology and optical band gap properties of nano-porous lithium magneso-silicate (LMS) thin films,” Materials Research Express. vol. 6(1), pp. 016404, 2019.

A.M. Mansour, I.M. El Radaf, and G.M. Mahmoud, “Effect of deposition temperature on structural, optical and electrical properties of chemically deposited thermochromic Cu2HgI4 thin films,” International Journal of Microstructure and Materials Properties. vol. 14(5), pp. 462-77, 2019.

A.M. Mansour, M. Nasr, H.A. Saleh, and G.M. Mahmoud, “Physical characterization of 5′,5″-dibromo-o-cresolsulfophthalein (BCP) spin-coated thin films and BCP/p-Si based diode,” Applied Physics A: Materials Science and Processing. vol. 125(9), pp. 2019.

A.M. Mansour, E.M. El-Menyawy, and G.M. Mahmoud, “Structural, optical and galvanomagnetical properties of low cost synthesised nanostructure Cu2S films,” International Journal of Microstructure and Materials Properties. vol. 14(3), pp. 272-285, 2019.

A.M. Mansour, “Fabrication and characterization of a photodiode based on 5′,5′′-dibromo-o-cresolsulfophthalein (BCP),” Silicon. vol. 11(4), pp. 1989-1996, 2019.

I.M. El Radaf, A.M. Mansour, and G.B. Sakr, “Fabrication, electrical and photovoltaic characteristics of CuInGeSe4/n-Si diode,” Journal of Semiconductors. vol. 39(12), p. 124010, 2018.

N. Hassan, A.M. Mansour, N. Roushdy, A.A.M. Farag, and W.G. Osiris, “Optical sensing performance characteristics of Schottky devices diodes based nano-particle disodium 6-hydroxy-5-[(2-methoxy-5-methyl-4-sulfophenyl)azo]-2-naphthalenesulfonate thin films: A comparison study,” Optik. vol. 158(4), pp. 1255-1265, 2018.

A.A.M. Farag, F.S. Terra, A. Ashery, G.M.M. Fahim, and A.M. Mansour, “Temperature dependence of J-V and C-V characteristics of n-InAs/p-GaAs heterojunctions prepared by flash evaporation technique and liquid phase epitaxy,” Indian Journal of Pure and Applied Physics. vol. 56(3), pp. 203-209, 2018.

M. Nasr, I.M. El Radaf, and A.M. Mansour, “Current transport and capacitance–voltage characteristics of an n-PbTe/p-GaP heterojunction prepared using the electron beam deposition technique,” Journal of Physics and Chemistry of Solids. vol. 115, pp. 283-288, 2018.

I.M. El Radaf, A.M. Mansour, and G.B. Sakr, “Fabrication, electrical and photovoltaic characteristics of CuInGeSe4/n-Si diode,” Journal of Semiconductors. vol. 39(12), pp. 124010, 2018.

A.M. Mansour, I.S. Yahia, and I.M.E. Radaf, “Structural, electrical and photovoltaic properties of PbSb2S5/n-Si heterojunction synthesized by vacuum coating technique,” Materials Research Express. vol. 5(7), pp. 2018.

I.M. El Radaf, M. Nasr, and A.M. Mansour, “Structural, electrical and photovoltaic properties of CoS/Si heterojunction prepared by spray pyrolysis,” Materials Research Express. vol. 5(1), pp. 015904, 2018.

A.A.M. Farag, F.S. Terra, A. Ashery, and A.M. Mansour, “Structural and electrical characterization of n-InAs/p-GaP heterojunctions prepared by vacuum flash evaporation and liquid phase epitaxy,” Optoelectronics and Advanced Materials, Rapid Communications. vol. 11(1-2), pp. 82-87, 2017.

A.M. Mansour and A.A.M. Farag, “Structural characterizations and the influence of metal work function contact for nanocrystalline 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline based devices,” Organo Opto-Electronics An International Journal. vol. 2(1), pp. 29-35, 2016.

A.A.M. Farag, F.S. Terra, A. Ashery, and A.M. Mansour, “Structural and electrical characteristics of n-InSb/p-GaAs heterojunction prepared by liquid phase epitaxy,” Journal of Alloys and Compounds. vol. 615(12), pp. 604-609, 2014.

A.A.M. Farag, W.G. Osiris, A.H. Ammar, and A.M. Mansour, “Electrical and photosensing performance of heterojunction device based on organic thin film structure,” Synthetic Metals. vol. 175, pp. 81-87, 2013.

A.A.M. Farag, A.M. Mansour, A.H. Ammar, M.A. Rafea, and A.M. Farid, “Electrical conductivity, dielectric properties and optical absorption of organic based nanocrystalline sodium copper chlorophyllin for photodiode application,” Journal of Alloys and Compounds. vol. 513(2), pp. 404-413, 2012.

A.A.M. Farag, F.S. Terra, G.M.M. Fahim, and A.M. Mansour, “Current transport and capacitance-voltage characteristics of n-InSb/p-GaP prepared by flash evaporation and liquid phase epitaxy,” Metals and Materials International. vol. 18(3), pp. 509-515, 2012.

A.A.M.A.M. Farag, A.M.M. Mansour, A.H.H. Ammar, and M.A. Rafea, “Characterization of electrical and optical absorption of organic based methyl orange for photovoltaic application,” Synthetic Metals. vol. 161(19-20), pp. 2135-2143, 2011.

A.A.M. Farag, F.S. Terra, G.M. Mahmoud, and A.M. Mansour, “Study of Gaussian distribution of inhomogeneous barrier height for n-InSb/p-GaAs heterojunction prepared by flash evaporation,” Journal of Alloys and Compounds. vol. 481(1-2), pp. 427-433, 2009.

C. Leepattarapongpan, T. Phetchakul, N. Penpondee, P. Pengpad, E. Chaowicharat, C. Hruanun, and A. Poyai, “Magnetotransistor Based on the Carrier Recombination—Deflection Effect,” IEEE Sensors Journal. vol. 10(2), pp. 294-299, 2010.

R.D. Tikhonov, “Magnetoconcentration effect on a base pn junction of a bipolar magnetotransistor,” Russian Microelectronics. vol. 39(5), pp. 340-351, 2010.

R.D. Tikhonov, “Offset voltage of an integrated magnetotransistor sensor,” Russian Microelectronics. vol. 39(1), pp. 42-53, 2010.

A.A. Higazy, H. Afifi, A.H. Khafagy, M.A. El-Shahawy, and A.M. Mansour, “Ultrasonic studies on polystyrene/styrene butadiene rubber polymer blends filled with glass fiber and talc,” Ultrasonics. vol. 44, no. SUPPL., pp. e1439-e1445, 2006.

W. Zhang, Z. Wang, W. Huang, and F. Li, “Fiber laser sensor for simultaneous acceleration and magnetic measurement,” In: 2016 IEEE SENSORS. pp. 1-3. IEEE (2016).

R. Blue, A. Dudus, and D. Uttamchandani, “A review of single-mode fiber optofluidics.,” IEEE Journal of Selected Topics in Quantum Electronics. vol. 22(2), pp. 380-391, 2016.

M.I. Bichurin, V.M. Petrov, R. V. Petrov, Yu.V. Kiliba, F.I. Bukashev, A. Yu. Smirnov, and D.N. Eliseev, “Magnetoelectric sensor of magnetic field,” Ferroelectrics. vol. 280(1), pp. 199-202, 2002.

M. Koschny, and M. Lindner, “Accurately analyze magnetic field distribution of magnetic materials,” Advanced Materials & Processes. no. February, pp. 13-16, 2012.

M. Ghanaatshoar, and M. Zamani, “Magneto-optical magnetic field sensors based on compact magnetophotonic crystals,” Journal of Superconductivity and Novel Magnetism. vol. 28(4), pp. 1365-1370, 2015.

A. Grosz, M.J. Haji-Sheikh, and S.C. Mukhopadhyay, Eds., High Sensitivity Magnetometers. Springer, Cham, 2017.

M. Lara-Castro, A.L. Herrera-May, R. Juarez-Aguirre, F. Lopez-Huerta, C.A. Ceron-Alvarez, I.E. Cortes-Mestizo, E.A. Morales-Gonzalez, H. Vazquez-Leal, and S.M. Dominguez-Nicolas, “Portable signal conditioning system of a MEMS magnetic field sensor for industrial applications,” Microsystem Technologies. vol. 23(1), pp. 215-223, 2017.

W. Chen, K. Hu, and E. Li, “Low-cost land vehicle attitude determination using single-epoch GPS data, MEMS-based inclinometer measurements,” Acta Geodaetica et Geophysica. vol. 52(1), pp. 111-129, 2017.

A.A. Azab, E.M. El-Menyawy, A.M. Mansour, G.M. Mahmoud, and F.S. Terra, “Structural, Optical and Electrical Properties of Nanocrystalline PbSe: In Films,” Recent Patents on Materials Science. vol. 11(1), pp. 41-47, 2018.

A.M. Mansour, E.M. El-Menyawy, G.M. Mahmoud, A.A. Azab, and F.S. Terra, “Structural, optical and galvanomagnetic properties of nanocrystalline Se51.43In44.67Pb3.9 thin films,” Materials Research Express. vol. 4(11), pp. 115903, 2017.

A.M. Mansour, “High quality insb microcrystal hall sensor doped with Te or Bi,” International Journal of Advanced Applied Physics Research. vol. 3(1), pp. 5-10, 2016.

A.M. Mansour, F.S Terra, and A.A Higazy, Semiconductor-Metal Hybrid Structure (SMHS). Noor Publishing, Saarbrücken, 2016.

A.M. Mansour, Semiconductor-meatal hypride structure and pn junctions made from A3B5. LAMBERT Academic Publishing, Berlin, 2015.

F. Terra, A. Higazy, G. Mahmoud, and A. Mansour, “InS semiconductor-metal hybrid structure (SMH) as a magnetic sensor prepared by flash evaporation,” Int. J. Nanoelectronics and Materials. vol. 3, pp. 53-61, 2010.

F.S. Terra, A.A. Higazy, G.M. Mahmoud, and A.M. Mansour, “(InSb/GaAs)-Au hybrid macro-structure prepared by flash evaporation,” Indian Journal of Physics. vol. 84(3), pp. 265-277, 2010.

J. Nickel, Magnetoresistance overview. Hewlett-Packard Laboratories Technical Publications Dept., Palo Alto Calif., 1995.

Christopher H. Bajorek, Magnetoresistive (MR) heads and the earliest MR head-based disk drives: Sawmill and Corsair. , Mountain View, CA, 2014.

Bell Telephone Laboratories, “Permalloy,” Journal of Chemical Education. vol. 2(12), pp. 1157-1158, 1925.

M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices,” Physical Review Letters. vol. 61(21), pp. 2472-2475, 1988.

P.P. Freitas, F. Silva, N.J. Oliveira, L.V. Melo, L. Costa, and N. Almeida, “Spin valve sensors,” Sensors and Actuators, A: Physical. vol. 81(1), pp. 2-8, 2000.

M.J. Carey, S. Maat, P. Rice, R.F.C. Farrow, R.F. Marks, A. Kellock, P. Nguyen, and B.A. Gurney, “Spin valves using insulating cobalt ferrite exchange-spring pinning layers,” Applied Physics Letters. vol. 81(6), pp. 1044-1046, 2002.

J.L. Leal, and M.H. Kryder, “Interlayer coupling in spin valve structures,” IEEE Transactions on Magnetics. vol. 32(5), pp. 4642-4644, 1996.

J.M. Teixeira, J.O. Ventura, R.P. Fermento, J.P. Araujo, J.B. Sousa, S.C. Freitas, and P.J. Freitas, “Interlayer coupling and magnetoresistance of MnIr-Based spin valves: Dependencies on deposition rate, spacer thickness, and temperature,” IEEE Transactions on Magnetics. vol. 43(7), pp. 3143-3145, 2007.

J.S. Moodera, L.R. Kinder, T.M. Wong, and R. Meservey, “Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions,” Physical Review Letters. vol. 74(16), pp. 3273-3276, 1995.

E.Y. Tsymbal, O.N. Mryasov, and P.R. LeClair, “Spin-dependent tunnelling in magnetic tunnel junctions,” Journal of Physics: Condensed Matter. vol. 15(4), pp. R109-R142, 2003.

V.K. Varadan, L. Chen, and J. Xie, Nanomedicine. John Wiley & Sons, Ltd, Chichester, 2008.

G. Korotcenkov, Ed., Chemical Sensors Simulation and Modeling Volume 5: Electrochemical Sensors. Momentum Press, New York, 2013.

B. Doudin and M. Viret, “Ballistic magnetoresistance?,” Journal of Physics: Condensed Matter. vol. 20(8), pp. 083201 (18pp), 2008.

P.F. Schewe, “Ballistic magnetoresistance,” Physics Today. vol. 55(8), pp. 9, 2002.

S.A. Solin, S.A. Solin, T. Thio, D.R. Hines, and J.J. Heremans, “Enhanced room-temperature geometric magneto-resistance in inhomogeneous narrow-gap semiconductors,” Science. vol. 289 (5484), pp. 1530-1532, 2000.

J. Moussa, L.R. Ram-Mohan, J.M. Sullivan, T. Zhou, D.R. Hines, and S.A. Solin, “Finite-element modeling of extraordinary magnetoresistance in thin film semiconductors with metallic inclusions,” Physical Review B. vol. 64(18), pp. 184410, 2001.

J. Sun, C.P. Gooneratne, and J. Kosel, “Design study of a bar-type EMR device,” IEEE Sensors Journal. vol. 12(5), pp. 1356-1360, 2012.

J. Sun and J. Kosel, “Finite element analysis on the influence of contact resistivity in an extraordinary magnetoresistance magnetic field micro sensor,” Journal of Superconductivity and Novel Magnetism. vol. 25(8), pp. 2749-2752, 2012.

M. Holz, O. Kronenwerth, and D. Grundler, “Semiconductor-metal hybrid structures as local magnetic-field probes: Magnetoresistance and spatial sensitivity profile,” Applied Physics Letters. vol. 87(17), pp. 172501, 2005.

M. Holz, O. Kronenwerth, and D. Grundler, “Magnetoresistance of semiconductor-metal hybrid structures: The effects of material parameters and contact resistance,” Physical Review B. vol. 67(19), p. 195312(10pp), 2003.

M. Holz, O. Kronenwerth, and D. Grundler, “Optimization of semiconductor–metal hybrid structures for application in magnetic-field sensors and read heads,” Applied Physics Letters. vol. 83(16), pp. 334-3346, 2003.

J. Moussa, L.R. Ram-Mohan, A.C.H. Rowe, and S.A. Solin, “Response of an extraordinary magnetoresistance read head to a magnetic bit,” Journal of Applied Physics. vol. 94(2), pp. 1110-1114, 2003.

C.H. Möller, O. Kronenwerth, D. Grundler, W. Hansen, C. Heyn, and D. Heitmann, “Extraordinary magnetoresistance effect in a microstructured metal–semiconductor hybrid structure,” Applied Physics Letters. vol. 80(21), pp. 3988-3990, 2002.

I.S. Ibrahim, V.A. Schweigert, and F.M. Peeters, “Diffusive transport in a Hall junction with a microinhomogeneous magnetic field,” Physical Review B. vol. 57(24), pp. 15416-15427, 1998.

J. Sun and J.J. Kosel, “Influence of semiconductor/metal interface geometry in an EMR sensor,” IEEE Sensors Journal. vol. 13(2), pp. 664-669, 2013.

J. Lu, H. Zhang, W. Shi, Z. Wang, Y. Zheng, T. Zhang, N. Wang. Z. Tang, and P. Sheng, “Graphene magnetoresistance device in van der pauw geometry,” Nano Letters. vol. 11(7), pp. 2973-2977, 2011.

J. Suh, W. Kim, J. Chang, S.-H. Han, and E.K. Kim, “Magneto-resistance of a polycrystalline InSb disk with an embedded Au core,” Journal of the Korean Physical Society. vol. 55(2), pp. 577-580, 2009.

T.H. Hewett and F. V. Kusmartsev, “Geometrically enhanced extraordinary magnetoresistance in semiconductor-metal hybrids,” Physical Review B - Condensed Matter and Materials Physics. vol. 82(21), pp. 3-6, 2010.

T.F. Rosenbaum, R. Xu, A. Husmann, M.-L. Saboungi, J.E. Enderby, and P.B. Littlewood, “Large magnetoresistance in non-magnetic silver chalcogenides,” Nature. vol. 390(6655), pp. 57-60, 1997.

W.R. Branford, A. Husmann, S.A. Solin, S.K. Clowes, T. Zhang, Y.V. Bugoslavsky, and L.F. Cohen “Geometric manipulation of the high-field linear magnetoresistance in InSb epilayers on GaAs (001),” Applied Physics Letters. vol. 86(20), pp. 202116, 2005.

S.A. Solin, D.R. Hines, A.C.H. Rowe, J.S. Tsai, and Y.A. Pashkin, “Nanoscopic magnetic field sensor based on extraordinary magnetoresistance,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. vol. 21(6), pp. 3002-3006, 2003.

T. Zhou, D.R. Hines, and S.A. Solin, “Extraordinary magneto-resistance in externally shunted van der Pauw plates,” Applied Physics Letters. vol. 78(5), pp. 667-669, 2001.

C. bing Rong, H. wei Zhang, J. rong Sun, and B. gen Shen, “Geometry and material optimization of the extraordinary magnetoresistance in the semiconductor-metal hybrid structure,” Journal of Magnetism and Magnetic Materials. vol. 301(2), pp. 407-414, 2006.

C.-B.B. Rong, H.-W.W. Zhang, J.-R.R. Sun, and B.-G.G. Shen, “Enhanced extraordinary magnetoresistance in the semiconductor-metal hybrid structure with three current leads,” Applied Physics Letters. vol. 89(5), pp. 3-5, 2006.

M. Hoener, O. Kronenwerth, C. Heyn, D. Grundler, and M. Holz, “Geometry-enhanced magnetoresistance of narrow Au/InAs hybrid structures incorporating a two-dimensional electron system,” Journal of Applied Physics. vol. 99(3), pp. 2-5, 2006.

Jian Sun, J. Kosel, C. Gooneratne, and Yeong-Ah Son, “Optimization of an Extraordinary Magnetoresistance sensor in the semiconductor-metal hybrid structure,” In: 2010 IEEE Sensors. pp. 1329-1332. IEEE (2010).

J. Sun, S.B. Patil, Y.A. Soh, and J. Kose, “Strong temperature dependence of extraordinary magnetoresistance correlated to mobility in a two-contact device,” Applied Physics Express. vol. 5(3), p. 033002(3pp), 2012.

M. Holz, O. Kronenwerth, and D. Grundler, “Enhanced sensitivity due to current redistribution in the Hall effect of semiconductor-metal hybrid structures,” Applied Physics Letters. vol. 86(7), pp. 1-3, 2005.

T.D. Boone, N. Smith, L. Folks, J.A. Katine, E.E. Marinero, and B.A. Gurney, “Mesoscopic EMR device magnetic sensitivity in I-V-I-V configuration,” IEEE Electron Device Letters. vol. 30(2), pp. 117-119, 2009.

J. Sun, and J. Kosel, “Hall effect enhanced low-field sensitivity in a three-contact extraordinary magnetoresistance sensor,” Applied Physics Letters. vol. 100(23), pp. 1-4, 2012.

M. Oszwaldowski, S. El-Ahmar, and J. Jankowski, “Extraordinary magnetoresistance in planar configuration,” Journal of Physics D: Applied Physics. vol. 45(14), pp. 145002(6pp), 2012.

A.S. Troup, D.G. Hasko, J. Wunderlich, and D.A. Williams, “Magnetoresistance in silicon-based semiconductor-metal hybrid structures,” Applied Physics Letters. vol. 89(2), pp. 3-5, 2006.

S.D. Parker, R.L. Williams, R. Droopad, R. Stradling, K. Barnham, S. Holmes, J. Laverty, C. Phillips, E. Skuras, and R. Thomas, “Observation and control of the amphoteric behaviour of Si-doped InSb grown on GaAs by MBE,” Semiconductor Science and Technology. vol. 4(8), pp. 663-676, 1989.

H. Kroemer, “The 6.1 Å family (InAs, GaSb, AlSb) and its heterostructures: A selective review,” Physica E: Low Dimensional Systems and Nanostructures. vol. 20(3-4), pp.196-203, 2004.

S. Pisana, P.M. Braganca, E.E. Marinero, and B. a. Gurney, “Graphene magnetic field sensors,” IEEE Transactions on Magnetics. vol. 46(6), pp. 1910-1913, 2010.

S. Pisana, P.M. Braganca, E.E. Marinero, and B.A. Gurney, “Tunable nanoscale graphene magnetometers,” Nano Letters. vol. 10(1), pp. 341-346, 2010.

A.L. Friedman, J.T. Robinson, F.K. Perkins, and P.M. Campbell, “Extraordinary magnetoresistance in shunted chemical vapor deposition grown graphene devices,” Applied Physics Letters. vol. 99(2), pp. 3-5, 2011.

J. Sun, and J. Kosel, “Extraordinary magnetoresistance in semiconductor/metal hybrids: A review,” Materials. vol. 6(2), pp. 500-516, 2013.




How to Cite

A. M. Mansour, “Magnetic sensors and geometrical magnetoresistance: A review”, J. Met. Mater. Miner., vol. 30, no. 4, pp. 1-18, Dec. 2020.



Review Articles