The enhancement of ethanol gas sensors response based on calcium and zinc co-doped LaFeO3/Fe2O3 thick film ceramics utilizing yarosite minerals extraction as Fe2O3 precursor

Authors

  • Endi SUHENDI Program Studi Fisika, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi No. 229, Bandung, 40154, Indonesia
  • Zeany Luckyta AMANDA Program Studi Fisika, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi No. 229, Bandung, 40154, Indonesi
  • Muhamad Taufik ULHAKIM Program Studi Fisika, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi No. 229, Bandung, 40154, Indonesia
  • Andhy SETIAWAN Program Studi Fisika, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi No. 229, Bandung, 40154, Indonesia
  • Dani Gustaman SYARIF Pusat Sains dan Teknologi Nuklir Terapan, Badan Tenaga Nuklir Nasional, Jl. Tamansari No. 71, Bandung, Indonesia

DOI:

https://doi.org/10.55713/jmmm.v31i2.1053

Keywords:

Co-doped LaFeO3/Fe2O3, LaFeO3/Fe2O3 Thick Film Ceramics, Yarosite Mineral, Ethanol Gas Sensing

Abstract

A gas sensor is a renewed interest of research which has been developed to make a device that can be detected the harmful gases and applied in the several fields of industries. In this paper, we report the modified of gas sensor based thick film ceramic LaFeO3/Fe2O3 by added calcium and zinc co-doping prepared by screen-printed technique. In this work, yarosite mineral was utilized as Fe2O3 precursor. It aims to take the advantages of abundance natural resources in Indonesia to save a cost in gas sensor fabrication. Then, x-ray diffraction (XRD), scanning electron microscopy (SEM) and electrical properties characterization were applied to the calcium and zinc co-doped LaFeO3/Fe2O3-based thick film ceramics. It is obtained that the crystal structures were cubic with crystallite size at about 51.19 nm and 48.17 nm. SEM images informed that calcium and zinc co-doped caused the larger pores of LaFeO3/Fe2O3. It indicates that the gas sensors shows a response to the ethanol gases. Lastly, calcium and zinc co-doped can be a potential candidate to enhance the highly performance of gas sensors. Moreover, yarosite mineral also can be used to develop the future perspectives of ethanol gas sensors.

Downloads

Download data is not yet available.

References

S. Zhao, Y. Shen, X. Yan, P. Zhou, Y. Yin, R. Lu, C. Han, B. Cui, and D. Wei, “Complex-surfactant-assisted hydrothermal synthesis of one-dimensional ZnO nanorods for high-performance ethanol gas sensor,” Sensor and Actuator B: Chemical, vol. 286, pp. 501-511, 2019. DOI: https://doi.org/10.1016/j.snb.2019.01.127

J. Wang, S. Fan, Y. Xia, C. Yang, and S. Komarneni, “Room-temperature gas sensors based on ZnO nanorod/Au hybrids: visible-light-modulated dual selectivity to NO2 and NH3,” Journal of Hazardous Materials, vol. 381, pp. 120919, 2020. DOI: https://doi.org/10.1016/j.jhazmat.2019.120919

J. Hu, M. Chen, Q. Rong, Y. Zhang, H. Wang, D. Zhang, X. Zhao, S. Zhou, B. Zi, J. Zhao, J. Zhang, Z. Zhu, and Q. Liu, “Formaldehyde sensing performance of reduced graphene oxide-wrapped hollow SnO2 nanospheres composites,” Sensors and Actuators B: Chemical, vol. 307, pp. 127584, 2020. DOI: https://doi.org/10.1016/j.snb.2019.127584

A. Umar, A. A. Ibrahim, R. Kumar, H. Albargi, M. A. Alsaiari, and F. Ahmed, “Cubic shaped hematite (-Fe2O3) microstructures composed of stacked nanosheets for rapid ethanol sensor application,” Sensors and Actuators B: Chemical, vol. 326, pp. 128851, 2020. DOI: https://doi.org/10.1016/j.snb.2020.128851

W. Qin, Z. Yuan, H. Gao, and F. Meng, “Ethanol sensors based on porous In2O3 nanosheet-assembled micro-flowers,” Sensors, vol. 20(1-14), pp. 3353, 2020. DOI: https://doi.org/10.3390/s20123353

B. Bouchikhi, T. Chludzinski, T. Saidi, J. Smulko, N. E. Bari, H. Wen, and R. Lonescu, “Formaldehyde detection with chemical gas sensors based on WO3 nanowires decorated with metal nanoparticles under dark condition and UV light irradiation,” Sensors and Actuators B: Chemical, vol. 320, pp. 128331, 2020. DOI: https://doi.org/10.1016/j.snb.2020.128331

B. Wang, Q. Yu, S. Zhang, T. Wang, P. Sun, X. Chuai, and G. Lu, “Gas sensing with yolk-shell LaFeO3 microspheres prepared by facile hydrothermal synthesis,” Sensors and Actuators B: Chemical, vol. 258, pp. 1215-1222, 2018. DOI: https://doi.org/10.1016/j.snb.2017.12.018

C. Liu, H. Lu, J. Zhang, Z. Yang, G. Zhu, F. Yin, J. Gao, C. Chen, and X. Xin, “Abnormal p-type sensing response of TiO2 nanosheets with exposed {001} facets,” Journal of Alloys and Compounds, vol. 705, pp. 112-117, 2017. DOI: https://doi.org/10.1016/j.jallcom.2017.02.118

S. M. Majhi, G. K. Naik, H. Lee, H. Song, C. Lee, I. Lee, and Y. Yu, “Au@NiO core-shell nanoparticles as a p-type gas sensor: novel synthesis, characterization, and their gas sensing properties with sensing mechanism,” Sensors and Actuators B: Chemical, vol. 268, pp. 223-231, 2018. DOI: https://doi.org/10.1016/j.snb.2018.04.119

P. Hao, G. Qiu, P. Song, Z. Yang, and Q. Wang, “Contruction of porous LaFeO3 microspheres decorated with NiO nanosheets for high response ethanol gas sensors,” Applied Surface Science, vol. 515, pp. 146025, 2020. DOI: https://doi.org/10.1016/j.apsusc.2020.146025

K. S. Choi, S. Park, and S. Chang, “Enhanced ethanol sensing properties based on SnO2 nanowires coated with Fe2O3 nanoparticles,” Sensors and Actuators B: Chemical, vol. 238, pp. 871-879, 2017. DOI: https://doi.org/10.1016/j.snb.2016.07.146

Y. Li, D. Deng, X. Xing, N. Chen, X. Liu, X. Xiao, and Y. Wang, “A high performance methanol gas sensor based on palladium-platinum-In2O3 composited nanocrystalline SnO2,” Sensors and Actuators B: Chemical, vol. 237, pp. 133-141, 2016. DOI: https://doi.org/10.1016/j.snb.2016.06.088

S. Liang, J. Li, F. Wang, J. Qin, X. Lai, and X. Jiang, “Highly sensitive acetone gas sensor based on ultrafine -Fe2O3 nanoparticles,” Sensors and Actuators B: Chemical, vol. 238, pp. 923-927, 2017. DOI: https://doi.org/10.1016/j.snb.2016.06.144

D. Meng, D. liu, G. Wang, Y. Shen, X. San, M. Li, and F. Meng, “Low-temperature formaldehyde gas sensors based on NiO-SnO2 heterojunction microflowers assembled by thin porous nanosheets,” Sensors and Actuators B: Chemical, vol. 273, pp. 418-428, 2018. DOI: https://doi.org/10.1016/j.snb.2018.06.030

H. Gao, L. Zhao, L. Wang, P. sun, H. Lu, F. Liu, X. Chuai, and G. Lu, “Ultrasensitive and low detection limit of toluene gas sensor based on SnO2-decorated NiO nanostructure,” Sensors and Actuators B: Chemical, vol. 255, pp. 3505-3515, 2018. DOI: https://doi.org/10.1016/j.snb.2017.09.184

M. S. Park, R. Yoo, B. Jang, Y. Park, M. Kim, H. Lee, and W. Lee, “Highly sensitive acetylene sensing properties of aland In-doped Zno quantum dots,” 17th International Meeting on Chemical Sensors – IMCS 2018, pp. 796-797, 2018. DOI: https://doi.org/10.5162/IMCS2018/P2GS.15

T. Sauerwald, T. Baur, M. Leidinger, W. Reimringer, L. Spinelle, M. Gerboles, G. kok, and A. Schutze, “Highly sensitive benzene detection with metal oxide semiconductor gas sensor – an inter-laboratory comparison,” Journal of Sensors and Sensor Systems, vol. 7, pp. 235-243, 2018. DOI: https://doi.org/10.5194/jsss-7-235-2018

Z. Song, J. Zhang, and J. Jiang, “Morphological evolution, luminescence properties and a high-sensitivity ethanol gas sensor based on 3D flower-like MoS2-ZnO micro/nanosphere arrays,” Ceramics International, vol. 46, pp. 6634-6640, 2020. DOI: https://doi.org/10.1016/j.ceramint.2019.11.151

C. Wang, Z. Wang, R. Xi, L. Zhang, S. Zhang, L. Wang, and G. Pan, “In situ synthesis of flower-like ZnO on Gan using electrodeposition and its application as ethanol gas sensor at room temperature,” Sensor and Actuator B: Chemical, vol. 292, pp. 270-276, 2019. DOI: https://doi.org/10.1016/j.snb.2019.04.140

H. Yu, J. Wang, B. Zheng, B. Zhang, L. Liu, Y. Zhou, C. Zhang, and X. Xue, “Fabrication of single crystalline WO3 nanobelts based photoelectric gas sensor for detection of high concentration ethanol gas at room temperature,” Sensors and Actuators A: Physical, vol. 303, pp. 111865, 2020. DOI: https://doi.org/10.1016/j.sna.2020.111865

Y. Zhang, Z. Duan, H. Zou, and M. Ma, “Fabrication of electrospun LaFeO3 nanotubes via annealing technique for fast ethanol detection,” Meterials Letter, vol. 215, pp. 58-61, 2018. DOI: https://doi.org/10.1016/j.matlet.2017.12.062

E. Cao, Z. Chu, H. Wang, W. Hao, L. Sun, and Y. Zhang, “Effect of film thickness on the electrical and ethanol sensing characteristics of LaFeO3 nanoparticle-based thick film sensors,” Ceramics International, vol. 44, pp. 7180-7185, 2018. DOI: https://doi.org/10.1016/j.ceramint.2018.01.163

J. Xiang, X. Chen, X. Zhang, L. Gong, Y. Zhang, and K. Zhang, “Preparation and characterization of Ba-doped LaFeO3 nanofibers by electrospinning and their ethanol sensing properties,” Materials Chemistry and Physics, vol. 213, pp. 122-129, 2018. DOI: https://doi.org/10.1016/j.matchemphys.2018.04.024

M. Chen, H. Wang, J. Hu, Y. Zhang, K. Li, D. Zhang, S. Zhou, J. Zhang, Z. Zhu, and Q. Liu, “Near-room-temperature ethanol gas sensor based on mesoporous Ag/Zn-LaFeO3 nanocomposite,” Adavanced Materials Interfaces, vol. 6, pp. 1801453, 2019. DOI: https://doi.org/10.1002/admi.201801453

W. Wei, S. Guo, C. Chen, L. Sun, Y. Chen, W. Guo, and S. Ruan, “High sensitive and fast formaldehyde gas sensor based on Ag-doped LaFeO3 nanofibers,” Journal of Alloys and Compounds, vol. 695, pp. 1122-1127, 2017. DOI: https://doi.org/10.1016/j.jallcom.2016.10.238

N. I. Ariyani, D. G. Syarif, and E. Suhendi, “Fabrication and characterization of thick film ceramics La0.9Ca0.1FeO3 for ethanol gas sensor using extraction of Fe2O3 from yarosite minerals”, IOP Conf. Ser.: Mater. science. eng. 384 012037. DOI: https://doi.org/10.1088/1757-899X/384/1/012037

H. Aliah, D. G. Syarif, R. N. Iman, A. Sawitri, W. Darmalaksana, A. Setiawan, A. Malik, and P. Gumarang, “Structure analysis of nanocomposites ZnO:Fe2O3 based mineral yarosite as Fe2O3 source and its application probability,” Materialstoday: Proceedings, vol. 13, pp. 36-40. 2019. DOI: https://doi.org/10.1016/j.matpr.2019.03.183

X. Liu, L. Jiang, X. Jiang, X. Tian, X. Sun, Y. Wang, W. He, P. Hou, X. Deng, and X. Xu, “Synthesis of Ce-doped In2O3 nanostructures for gas sensors applications,” Applied Surface Sciences, vol. 428, pp. 478- 484, 2018. DOI: https://doi.org/10.1016/j.apsusc.2017.09.177

X. Kou, N. Xie, F. Chen, T. Wang, L. Guo, C. Wang, Q. Wang, J. Ma, Y. Sun, H. Zhang, and G. Lu, “Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping,” Sensors and Actuators B: Chemical, vol. 256, pp. 861-869, 2018. DOI: https://doi.org/10.1016/j.snb.2017.10.011

G. Singh, Virpal, and R. C. Singh, “Highly sensitive gas sensor based on Er-doped SnO2 nanostructures and its temperature dependent selectivity towards hydrogen and ethanol,” Sensors and Actuator B: Chemical, vol. 282, pp. 373-383, 2019. DOI: https://doi.org/10.1016/j.snb.2018.11.086

E. Suhendi, N. A. Lidiawati, D. G. Syarif, and A. Setiawan, “Synthesis and characterization of Al2O3-doped LaFeO3 thick film ceramics for ethanol gas sensing application,” Oriental Journal of Chemistry, vol. 35, pp. 283-288, 2019. DOI: https://doi.org/10.13005/ojc/350134

M. A. M. Akhir, S. A. Rezan, K. Mohamed, M. M. Arafat, A. S. M. A. Haseeb, and H. L. Lee, “Synthesis of SnO2 nanoparticles via hydrothermal method and their gas sensing applications for ethylene detection,” Materialstoday: Proceedings, vol. 17, pp. 810-819, 2019. DOI: https://doi.org/10.1016/j.matpr.2019.06.367

E. Suhendi, M. T. Ulhakim, A. Setiawan, and D.G. Syarif, “The effect of SrO doping on LaFeO3 using yarosite extraction based ethanol gas sensors performance fabricated by coprecipitation method,” International Journal of Nanoelectronics and Materials, vol. 12, pp. 185-192, 2019.

D. Zhang, J. Liu, C. Jiang, P. Li, and Y. Sun, “High-performance sulfure dioxide sensing properties of layer-by-layer self-assembled titania-modified graphene hybrid nanocomposite,” Sensors and Actuators B: Chemical, vol. 245, pp. 560-567, 2017. DOI: https://doi.org/10.1016/j.snb.2017.01.200

A. Beniwal, P. K. Sahu, and S. Sharma, “Sol-gel spin coating assited room temperature operated nanostructured ZnO ethanol sensor with behavior transformation,” Journal of Sol-Gel Science and Technology, vol. 88, pp. 322-333, 2018. DOI: https://doi.org/10.1007/s10971-018-4841-5

L. Song, L. Yang, Z. Wang, D. Liu, L. Luo, X. Zhu, Y. Xi, Z. Yang, N. Han, F. Wang, and Y. Chen, “One-step electrospun SnO2/MOx heterostructured nanomaterials for highly selective gas sensor array integration,” Sensor and Actuators B: Chemical, vol. 283, pp. 793-801, 2019. DOI: https://doi.org/10.1016/j.snb.2018.12.097

L. Lv, P. Cheng, Y. Wang, L. Xu, B. Zhang, C. Lv, J. Ma, and Y. Zhang, “Sb-doped three-dimensional ZnFe2O4 macroporous spheres for N-butanol chemiresistive gas sensors,” Sensor and Actuators B: Chemical, vol. 320, pp. 128384, 2020. DOI: https://doi.org/10.1016/j.snb.2020.128384

A. M. Awwad, N. M. Salem, M. M. Aqarbeh, and F. M. Abdulaziz, “Green synthesis, characterization of silver sulfide nanoparticles and antibacterial activity evaluation,” Chemistry International, vol. 6, pp. 42-48, 2020.

A. Monshi, M. R. Foroughi, and M. R. Monshi, “Modified scherrer equation to estimate more accurately nano-crystallite size using XRD,” World Journal of Nano Science and Engineering, vol. 2, pp. 154-160, 2012. DOI: https://doi.org/10.4236/wjnse.2012.23020

D. Rathore, S. Mitra, R. Kurchania, and R. K. Pandey, “Physicho-chemical properties of CuFe2O4 nanoparticles as a gas sensor,” Journal of Materials Science: Materials in Electronics, vol. 29, pp. 1925-1932, 2018. DOI: https://doi.org/10.1007/s10854-017-8102-0

M. Deshwal, and A. Arora, “Enhanced acetone detection using Au doped ZnO thin film sensor,” Journal of Materials Science: Materials in Electronics, vol. 29, pp. 15315-15320, 2018. DOI: https://doi.org/10.1007/s10854-018-8805-x

C. Rana, S. R. Bera, and S. Saha, “Growth of SnS nanoparticles and its ability as ethanol gas sensor,” Journal of Materials Science: Materials in Electronics, vol. 30, pp. 2016-2029, 2019. DOI: https://doi.org/10.1007/s10854-018-0473-3

F. Li, Y. Liu, R. Liu, Z. Sun, D. Zhao, and C. Kou, “Preparation of Ca-doped LaFeO3 nanopowders in a reverse microemulsion and their visible light photocatalytic activity,” Materials Letters, vol. 64, pp. 223-225, 2010. DOI: https://doi.org/10.1016/j.matlet.2009.10.048

T. L. Rao, M. Pradhan, and S. Dash, “Structural, microstructure and impedance spectroscopy analysis of Zn2+ doped LaFeO3 nanoparticle,” AIP Conference Proceedings, vol. 2115, pp. 030089S, 2019. DOI: https://doi.org/10.1063/1.5112928

S. A. Kumar, P. Kuppusami, S. Amirthapandian, and Y. Fu, “Effect of Sm co-doping on structural, mechanical and electrical properties of Gd doped ceria solid electrolytes for intermediate temperatur solid oxide fuel cells,” International

Journal of Hydrogen Energy, vol. 45, pp. 29690-29704, 2020. DOI: https://doi.org/10.1016/j.ijhydene.2019.10.098

C. Feng, S. Ruan, J. Li, B. Zou, J. Luo, W. Chen, W. Dong, and F. Wu, “Ethanol sensing properties of LaCoxFe1-xO3 nanoparticles: Effects of calcination temperature, Co-doping, and carbon nanotube-treatment,” Sensors and Actuators B: Chemical, vol. 155, pp. 232-238, 2011. DOI: https://doi.org/10.1016/j.snb.2010.11.053

L. Guo, X. Kou, M. Ding, C. Wang, L. Dong, H. Zhang, C. Feng, Y. Sun, Y. Gao, P. Sun, and G. Lu, “Reduce graphene oxide/ -Fe2O3 composite nanofibers for application in gas sensors,” Sensors and Actuators B: Chemical, vol. 244, pp. 233242, 2017. DOI: https://doi.org/10.1016/j.snb.2016.12.137

H. Aliah, R. N. Iman, A. Sawitri, D. G. Syarif, A. Setiawan, W. Darmalaksana, and A. Malik, “The optimization of ZnFe2O4/ Mn2O3-based nanocomposite ceramic fabrication utilizing local minerals as an ethanol gas detector,” Materials Research Express, vol. 6, pp. 095908, 2019. DOI: https://doi.org/10.1088/2053-1591/ab2ffe

G. F. Fine, L. M. Cavanagh, A. Afonja, and R. Binions, “Metal- oxide semiconductor gas sensors in environmental monitoring,” Sensors, vol. 10, pp. 5469-5502, 2010. DOI: https://doi.org/10.3390/s100605469

Downloads

Published

2021-06-27

How to Cite

[1]
E. SUHENDI, Z. L. AMANDA, M. T. ULHAKIM, A. SETIAWAN, and D. G. SYARIF, “The enhancement of ethanol gas sensors response based on calcium and zinc co-doped LaFeO3/Fe2O3 thick film ceramics utilizing yarosite minerals extraction as Fe2O3 precursor”, J Met Mater Miner, vol. 31, no. 2, pp. 71–77, Jun. 2021.

Issue

Section

Original Research Articles