Effects of ball milling duration and sintering temperature on mechanical alloying Fe3Si

Authors

  • Varistha Chobpattana Department of Materials and Metallurgical Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, 39 Moo 1, Rangsit-Nakhon Nayok Road, Khlong Hok, Khlong Luang District, Pathum Thani 12110, Thailand
  • Chakansin PHOOMKONG Department of Materials and Metallurgical Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, 39 Moo 1
  • Peerawat NUTNUAL Department of Materials and Metallurgical Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, 39 Moo 1
  • Kritsada THAENGTHONG Department of Electrical and Computer Engineering, Faculty of Engineering, Thammasat University, 99 Moo 18, Khlong Nueng, Khlong Luang District, Pathum Thani 12120, Thailand
  • Wanchai Pijitrojana Department of Electrical and Computer Engineering, Faculty of Engineering, Thammasat University, 99 Moo 18, Khlong Nueng, Khlong Luang District, Pathum Thani 12120, Thailand

DOI:

https://doi.org/10.55713/jmmm.v31i3.1104

Keywords:

Fe3Si alloy, Ferromagnetic materials, Powder metallurgy

Abstract

Fe3Si is under interest as a ferromagnetic electrode of magnetic tunneling junctions (MTJs). Its crystalline structure is important for achieving high device efficiency. This work focuses on mechanical alloying of 3:1 ratio of 99% pure Fe and Si powder mixtures by ball milling and sintering. The mixtures were ball-milled for various durations up to 20 h. Then, they were sintered from 400°C  to 800°C for 4 h in Ar.  SEM images and particle size analysis show significant reduction in average particle size of the mixtures after ball milling for 20 h. The longer duration of ball milling process promotes powder distribution. It results in agglomerated and smooth samples after sintering. XRD analysis indicates that Fe3Si phase appeared after 5 h of mechanical ball milling without sintering. More peaks of Fe3Si phase present at sintering temperatures higher than 600°C, while Fe2Si phase diminishes. However, the amount of Fe2O3 phase increases when sintering at these high temperatures, which strongly affects the magnetic properties of the samples. Magnetic hysteresis loops measured by vibrating-sample magnetometer (VSM) show lower magnetic moments of these samples.  Saturation magnetization of the sample decreases more than 95% when sintered at 800°C, agreeing with high content of Fe2O3. 

Downloads

Download data is not yet available.

References

R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L.W. Molenkamp, “Injection and detection of a spin-polarized current in a light-emitting diode,” Nature, vol. 402, pp. 787-790, 1999. DOI: https://doi.org/10.1038/45502

Y. Ohno, D.K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D.D. Awschalom, “Electrical spin injection in a ferro-

magnetic semiconductor heterostructure,” Nature, vol. 402, pp. 790-792, 1999. DOI: https://doi.org/10.1038/45509

B.T. Jonker, Y.D. Park, B.R. Bennett, H.D. Cheong, G. Kioseoglou, and A. Petrou, “Robust electrical spin injection into a semiconductor heterostructure,” Physical Review B, vol. 62, pp. 8180-8183, 2000. DOI: https://doi.org/10.1103/PhysRevB.62.8180

T. Manago, and H. Akinaga, “Spin-polarized light-emitting diode using metal/insulator/semiconductor structures,” Applied Physics Letters, vol. 81, pp. 694-696, 2002. DOI: https://doi.org/10.1063/1.1496493

F. Lin, D. Jiang, X. Ma, and W. Shi, “Structural order and magnetic properties of Fe3Si/Si(100) heterostructures grown by pulsed-laser deposition,” Thin Solid Films, vol. 515, pp. 5353-5356, 2007. DOI: https://doi.org/10.1016/j.tsf.2007.01.024

W. Rotjanapittayakul, W. Pijitrojana, T. Archer, S. Sanvito, and J. Prasongkit, “Spin injection and magnetoresistance in MoS2-based tunnel junctions using Fe3Si Heusler alloy electrodes,” Scientific Reports, vol. 8, pp. 4779, 2018. DOI: https://doi.org/10.1038/s41598-018-22910-9

S.H. Liou, S.S. Malhotra, J.X. Shen, M. Hong, J. Kwo, H.S. Chen, and J.P. Mannaerts, “Magnetic properties of epitaxial single crystal ultrathin Fe3Si films on GaAs (001),” Applied Physics Letters, vol. 73(10), pp. 6766-6768, 2003.

W.A. Hines, A.H. Menotti, J.I. Budnick, T.J. Burch, T. Litrenta, V. Niculescu, and K. Raj, “Magnetization studies of binary and ternary alloys based on Fe3Si,” Physical Review B, vol. 13(9), pp. 4060-4068, 1976. DOI: https://doi.org/10.1103/PhysRevB.13.4060

R.A. de Groot, and F.M. Mueller, “New Class of Materials: Half-Metallic Ferromagnets,” Physical Review Letters, vol. 50(25), pp. 2024-2027, 1983. DOI: https://doi.org/10.1103/PhysRevLett.50.2024

A. Kawaharazuka, M. Ramsteiner, J. Herfort, H.-P. Schonherr, H. Kostial, and K.H. Ploog, “Spin injection from Fe3Si into GaAs,” Applied Physics Letters, vol. 85(16), pp. 3492-3494, 2004. DOI: https://doi.org/10.1063/1.1807014

Y. Fujita, S. Yamada, G. Takemoto, S. Oki, Y. Maeda, M. Miyao, and K. Hamaya, “Room-temperature tunneling magneto-resistance in magnetic tunnel junctions with a D03 – Fe3Si electrode,” Japanese Journal of Applied Physics, vol. 52, number 4S, 2013. DOI: https://doi.org/10.7567/JJAP.52.04CM02

K. Kobayashi, T. Suemasu, N. Kuwano, D. Hara, and H. Akinaga, “Epitaxial growth of Fe3Si/CaF2/Fe3Si magnetic tunnel junction structures on CaF2/Si (111) by molecular beam epitaxy,” Thin Solid Films, vol. 515, pp. 8254-8258, 2007. DOI: https://doi.org/10.1016/j.tsf.2007.02.057

K. Harada, K. Makabe, H. Akinaga, and T. Suemasu, “Magneto-resistance characteristics of Fe3Si/CaF2/Fe3Si heterostructures grown on Si (111) by molecular beam epitaxy,” Physics Procedia. vol. 11, pp.15-18, 2011.

K. Harada, K. Makabe, H. Akinaga, and T. Suemasu, “Room temperature magnetoresistance in Fe3Si/CaF2/Fe3Si MTJ epitaxially grown on Si (111),” Journal of Physics: Conference Series, vol. 266, pp. 0120881-0120885, 2011. DOI: https://doi.org/10.1088/1742-6596/266/1/012088

L.L. Tao, S.H. Liang, D.P. Liu, H.X. Wei, J. Wang, and X.F. Han, “Tunneling magnetoresistance in Fe3Si/MgO/Fe3Si (001) magnetic tunnel junctions,” Applied Physics Letter, vol.104, pp. 1724061-1724065, 2014. DOI: https://doi.org/10.1063/1.4874837

K. Ishibashi, K. Kudo, K. Nakashima, Y. Asai, K. Sakai, H. Deguchi, and T. Yoshitake, “Temperature-dependent magneto-resistance effects in Fe3Si/FeSi2/Fe3Si trilayered spin valve junctions,” Japan Society of Applied Physics Conference Proceedings, vol. 5, pp. 011501, 2017. DOI: https://doi.org/10.7567/JJAPCP.5.011501

S. Gaucher, B. Jenichen, J. Kalt, U. Jahn, A Trampert, and J. Herfort, “Growth of Fe3Si/Ge/Fe3Si trilayers on GaAs (001) using solid-phase epitaxy,” Applied Physics Letters, vol. 110, pp. 102103, 2017. DOI: https://doi.org/10.1063/1.4977833

B. Jenichen, J. Herfort, U. Jahn, A. Trampert, and H. Riechert, “Epitaxial Fe3Si/Ge/Fe3Si thin film multilayers grown on GaAs (001),” Thin Solid Films, vol. 556, pp. 120-124, 2014. DOI: https://doi.org/10.1016/j.tsf.2014.01.022

H. Vinzelberg, J. Schumann, D. Elefant, E. Arushanov, and O.G. Schmidt, “Transport and magnetic properties of Fe3Si epitaxial films,” Journal Applied Physics, vol. 104, pp. 093707, 2008. DOI: https://doi.org/10.1063/1.3008010

J. Xie, Q. Xie, R. Ma, J. Huang, C. Zhang, and D. Liu, “Annealing temperature dependent structures and properties of ferromagnetic Fe3Si films fabricated by resistive thermal evaporation,” Journal of Materials Science: Materials in Electronics, vol.29, pp. 1369-1376, 2018. DOI: https://doi.org/10.1007/s10854-017-8043-7

K. Seo, N. Bagkar, S. Kim, J. In, H. Yoon, Y. Jo, and B. Kim, “Diffusion-Driven Crystal Structure Transformation: Synthesis of Heusler Alloy Fe3Si Nanowires,” Nano Letter, vol. 10, pp. 3643-3647, 2010. DOI: https://doi.org/10.1021/nl102093e

T. Yoshitake, D. Nakagauchi, T. Ogawa, M. Itakura, N. Kuwano, Y. Tomokiyo, T. Kajiwara, and K. Nagayama, “Room-temperature epitaxial growth of ferromagnetic Fe3Si films on Si(111) by facing target direct-current sputtering,” Applied Physics Letters, vol. 86, pp. 262505, 2005. DOI: https://doi.org/10.1063/1.1978984

C.D. Stanciu, T.F. Marinca, I. Chicinas, and O. Isnard, “Characterisation of the Fe-10 wt% Si nanocrystalline powder obtained by mechanical alloying and annealing,” Journal of Magnetism and Magnetic Materials, vol. 441, pp. 455-464, 2017. DOI: https://doi.org/10.1016/j.jmmm.2017.06.010

H. Gomi, K. Hirose, H. Akai, and Y. Fei, “Electrical resistivity of substitutionally disordered hcp Fe–Si and Fe–Ni alloys: chemically-induced resistivity saturation in the Earth’s core”, Earth Planet. Sci. Letter, vol. 451, pp. 51-61, 2016. DOI: https://doi.org/10.1016/j.epsl.2016.07.011

C. Suryanarayana, “Mechanical alloying and milling” Progress in Materials Science, vol. 46, pp. 38, 2001. DOI: https://doi.org/10.1016/S0079-6425(99)00010-9

D. Walter, Nanomaterials. Deutsche Forschungsgemeinschaft (DFG), 2013. DOI: https://doi.org/10.1002/9783527673919

H. Yamada, H. Katsumata, D. Yuasa, S. Uekusa, M. Ishiyama, H. Souma, I. Azumaya, “Structural and electrical properties of β-FeSi2 bulk materials for thermoelectric applications” Physics Procedia, vol 23, pp. 13-16, 2012. DOI: https://doi.org/10.1016/j.phpro.2012.01.004

R. M. Bozorth, Ferromagnetism, New York: Van Nostrand, 1964.

S. H. Liou, S. S. Malhotra, and J. X. Shen, “Magnetic properties of epitaxial single crystal ultrathin Fe3Si films on GaAs (001),” Journal of Applied Physics, vol. 73(10), pp. 6766-6768, 1993. DOI: https://doi.org/10.1063/1.352479

M. P. C. Kalita, A. Perumal, and A. Srinivasan, “Structure and magnetic properties of nanocrystalline Fe75Si25 powders prepared by mechanical alloying,” Journal of Magnetism and Magnetic Materials, vol. 320(21), pp. 2780-2783, 2008. DOI: https://doi.org/10.1016/j.jmmm.2008.06.014

Downloads

Published

2021-09-28

How to Cite

[1]
V. Chobpattana, C. PHOOMKONG, P. NUTNUAL, K. THAENGTHONG, and W. Pijitrojana, “Effects of ball milling duration and sintering temperature on mechanical alloying Fe3Si”, J Met Mater Miner, vol. 31, no. 3, pp. 100–105, Sep. 2021.

Issue

Section

Original Research Articles