Synthesis of porous silica by co-micelle emulsion templating technique using PEG/acrylamide and 2–(acryloyloxy)–N,N,N–trimethylethanaminium chloride/acrylamide as templates
Keywords:
Porous silica, Co-MET, PEG, 2–(acryloyloxy)–N,N,N–trimethylethanaminium chlorideAbstract
Co-micelle emulsion templating (co-MET) technique is a new method to synthesize uniform and ordered porous silica from tetraethylortosilicate precursor using double polymer as templates. In this study, co-MET technique was conducted by varying template type (namely PEG/acrylamide and 2–(acryloyloxy)–N,N,N–trimethylethanaminium chloride/acrylamide) and percentage of polymer (2.5%, 5%, 10%, 15% and 20% for PEG and 0.5%, 1%, 2.5%, 5%, 10% for 2–(acryloyloxy)–N,N,N–trimethylethanaminium chloride). The resulting porous silica were then characterized by SEM-EDS, BET and XRD to investigates the pore character and structure of silica. Based on SEM-EDS and BET analysis, it is shown that the amount and the type of polymer gave a significant effect to the structure formation of the porous silica. Cationic polymer as templates gave higher surface area and uniform pore size than neutral polymer templates. Polymer concentration of 2.5% gave the best result for both template types, resulting an interconnected mesopore silica with surface area of 615 m2/g for PEG and 1137 m2/g for 2–(acryloyloxy)–N,N,N–trimethylethanaminium chloride.Downloads
References
Jia, L., Zhang, S., Gu, F., Ping, Y., Guo, X., Zhong, Z. and Su, F. (2012). Highly selective gas phase oxidation of benzyl alcohol to benzaldehyde over silver-containing hexagonal mesoporous silica. Microporous and Mesoporous Materials. 149 : 158-165.
Kisler, J.M., Dahler, A., Stevens, G.W. and O’Connor, A.J. (2001). Separation of biological molecules using mesoporous molecular sieves. Microporous and Mesoporous Materials. 44-45 : 769-774.
Lee, B., Kim, Y., Lee, H. and Yi, J. (2001). Synthesis of functionalized porous silicas via templating method as heavy metal ion adsorbents : the introduction of surface hydrophilicity onto the surface of adsorbents. Microporous Mesoporous Mater. 50 : 77-90
Popat, A., Hartono, S.B., Stahr, F., Liu, J., Qiao, S.Z. and Lu, G.Q. (2011). Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale. 3(7) : 2801-2818.
Lei, J., Fan, J., Yu, C., Zhang, L., Jiang, S., Tu, B. and Zhao, D. (2004). Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace. Microporous and Mesoporous Materials. (73) : 121-128.
Essien, E.R., Olaniyi, O.A., Adams, L.A. and Shaibu, R.O. (2011). Highly porous silica network prepared from sodium metasilicate. Journal of Metals, Materials and Minerals. 21(2) : 7-12.
Sarvi, M.N., Stevens, G.W., Gee, M.L. and O’Connor, A.J. (2012). The co-micelle/emulsion templating route to tailor nano-engineered hierarchically porous macrospheres. Microporous and Mesoporous Materials. 149 : 101-105.
Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C. and Beck, J.S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid crystal template mechanism. Nature. 359 : 710-712.
Zhao, D.Y., Feng, J.L., Huo, Q.S., Melosh, N., Fredrickson, G.H., Chmelka, B.F. and Stucky, G.D. (1998). Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science. 279 : 548-552.
Schmidt-Winkel, P., Lukens, W.W., Zhao, D.Y., Yang, P.D., Chmelka and Stucky, G.D. (1999). Mesocellular siliceous foams with uniformly sized cells and windows. J. Am. Chem. Soc. (121) : 254-255.
Fan, J., Yu, C.Z., Gao, T., Lei, J., Tian, B.Z., Wang, L.M., Luo, Q., Tu, B., Zhou, W.Z. and Zhao, D.Y. (2003). Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angew. Chem. Int. Ed. (42) : 3146-3150.
Brennan, J.D., Hartman, J.S., Ilnicki, E.I. and Rakic, M. (1999). Fluorescence and NMR characterization and biomolecule entrapment studies of sol-gel-derived organic-inorganic composite materials formed by sonication of precursors. Chem. Mater. (11) : 1853-1864.
Zhang, H. and Cooper, A.I. (2002). Synthesis of monodisperse emulsion-templated polymer beads by oil-in-water-in-oil (O/W/O) sedimentation polymerization. Chem. Mater. (14) : 4017-4020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Journal of Metals, Materials and Minerals
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.