Thermodynamic determination of optimal conditions for growing Si1-xGex crystals from a tin solution on a silicon substrate

Authors

  • Alijon Shonazarovich RAZZOKOV Department of Physics, Urgench State University, 14 h Kh. Alimjan str. 220100, Urgench, Uzbekistan
  • Khushnudbek Odilbekovich ESHCHANOV Department of Chemistry, Urgench State University, 14 h Kh. Alimjan str. 220100, Urgench, Uzbekistan

DOI:

https://doi.org/10.55713/jmmm.v32i2.1260

Keywords:

Solution-melt, solid solution, dislocation, nanocluster, activity coefficient

Abstract

Thermodynamic calculations have been carried out for growing crystalline Si1-xGex solid solution epitaxial films on Si<100> and Si<111> substrates from a tin solution-melt by liquid-phase epitaxy. Nanoclusters are thought to be involved in crystal growth. To determine the optimal conditions for obtaining a Si1-xGex crystal from a Si-Ge-Sn solution system, we focused on the change in Gibbs energy and the size of the nanoclusters involved in crystal formation. On this basis, a film with a thickness of 5 µm to 8 µm was experimentally obtained in the temperature range from Тc.s.=1135 K (crystallization start temperature) to Тc.t.=1023 K (crystallization termination temperature). It was also possible to reduce the dislocation density at the substrate-film boundary (up to 3 ´ 104 cm-2) and along the growth direction (film surfaces up to 8 ´ 103 cm-2). A method of thermodynamic prediction for obtaining semiconductor structures has been developed.

Downloads

Download data is not yet available.

References

Wang and N. Quitoriano, "SiGe films and graded buffers grown by liquid phase epitaxy from different growth solution compositions", Journal of Crystal Growth, vol. 510, pp. 65-75, 2019. Available: 10.1016/j.jcrysgro.2019.01.014

P. Hansson, J. Werner, L. Tapfer, L. Tilly and E. Bauser, "Liquid‐phase epitaxy and characterization of Si1−xGexlayers on Si substrates", Journal of Applied Physics, vol. 68, no. 5, pp. 2158-2163, 1990. Available: 10.1063/1.346572

. S. Chaurasia, S. Raghavan and S. Avasthi, "High Quality Epitaxial Germanium on Si (110) using Liquid Phase Crystallization for Low—Cost III-V Solar-Cells", 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), 2018. Available: 10.1109/pvsc.2018.8548031

. G. Wang et al., "A model of threading dislocation density in strain-relaxed Ge and GaAs epitaxial films on Si (100)", Applied Physics Letters, vol. 94, no. 10, p. 102115, 2009. Available: 10.1063/1.3097245

. J. Speck, M. Brewer, G. Beltz, A. Romanov and W. Pompe, "Scaling laws for the reduction of threading dislocation densities in homogeneous buffer layers", Journal of Applied Physics, vol. 80, no. 7, pp. 3808-3816, 1996. Available: 10.1063/1.363334

. E. Fitzgerald et al., "Totally relaxed GexSi1−x layers with low threading dislocation densities grown on Si substrates", Applied Physics Letters, vol. 59, no. 7, pp. 811-813, 1991. Available:10.1063/1.105351

. A. O'Reilly and N. Quitoriano, "Reduction of threading dislocation density in SiGe epilayer on Si (0 0 1) by lateral growth liquid-phase epitaxy", Journal of Crystal Growth, vol. 483, pp. 223-227, 2018. Available: 10.1016/j.jcrysgro.2017.12.010.

A. Saidov and A. Razzokov, "Preparation and Morphological Studies of Epitaxial Layers of a Solid Solution Si1–xGex", Siberian Journal of Physics, vol. 15, no. 2, pp. 84-91, 2020. Available: 10.25205/2541-9447-2020-15-2-84-91

. Victor I. Fistul. Impurities in Semiconductors: Solubility, Migration and Interactions, CRC Press. 2004.

. Gaskell, D.R., & Laughlin, D.E. Introduction to the Thermodynamics of Materials (6th ed.). CRC Press. 2017.

. S.Uda, X.Huang, S.Koh. Journal of Crystal Growth, vol. 281, pp. 481–491, 2005.

. Liu, X. Y. "Heterogeneous nucleation or homogeneous nucleation?". The Journal of Chemical Physics, vol. 112 no. 22, pp. 9949–9955, 2000. Available: 10.1063/1.481644.

. Razzokov, A.Sh., Khakimov, N.Z., Davletov, I.Y., Eshchanov, Kh.O. and Matnazarov, A.R. "Obtaining a structurally perfect semiconductor solid solution Si1-xGex with electrophysical and photoelectric properties,"Scientific-technical journal: vol. 24: Iss. 5, pp. 11, 2020. Available at: https://uzjournals.edu.uz/ferpi/vol24/iss5/11

. Arthur D. Pelton. Phase Diagrams and Thermodynamic Modeling of Solutions, Elsevier, 2019. DOI:10.1016/C2013-0-19504-9

. Hans J. Scheel, T. Fukuda. “Crystal Growth Technology”, Wiley & Sons, Chichester UK hardcover, 2003.

. Nguyen T. K. Thanh, N. Maclean, and S. Mahiddine, Mechanisms of Nucleation and Growth of Nanoparticles in Solution, Chemical Reviews, 114(15), pp. 7610-7630, 2014.

. Ivan Markov. Crystal Growth For Beginners: Fundamentals of Nucleation, Crystal Growth And Epitaxy (Third ed.). Singapore: World Scientific, 2016. DOI: 10.1142/10127

Downloads

Published

2022-06-30

How to Cite

[1]
A. S. RAZZOKOV and K. O. . ESHCHANOV, “Thermodynamic determination of optimal conditions for growing Si1-xGex crystals from a tin solution on a silicon substrate”, J Met Mater Miner, vol. 32, no. 2, pp. 83–87, Jun. 2022.

Issue

Section

Original Research Articles