Thermodynamic determination of optimal conditions for growing Si1-xGex crystals from a tin solution on a silicon substrate
DOI:
https://doi.org/10.55713/jmmm.v32i2.1260คำสำคัญ:
Solution-melt, solid solution, dislocation, nanocluster, activity coefficientบทคัดย่อ
Thermodynamic calculations have been carried out for growing crystalline Si1-xGex solid solution epitaxial films on Si<100> and Si<111> substrates from a tin solution-melt by liquid-phase epitaxy. Nanoclusters are thought to be involved in crystal growth. To determine the optimal conditions for obtaining a Si1-xGex crystal from a Si-Ge-Sn solution system, we focused on the change in Gibbs energy and the size of the nanoclusters involved in crystal formation. On this basis, a film with a thickness of 5 µm to 8 µm was experimentally obtained in the temperature range from Тc.s.=1135 K (crystallization start temperature) to Тc.t.=1023 K (crystallization termination temperature). It was also possible to reduce the dislocation density at the substrate-film boundary (up to 3 ´ 104 cm-2) and along the growth direction (film surfaces up to 8 ´ 103 cm-2). A method of thermodynamic prediction for obtaining semiconductor structures has been developed.
Downloads
เอกสารอ้างอิง
Wang and N. Quitoriano, "SiGe films and graded buffers grown by liquid phase epitaxy from different growth solution compositions", Journal of Crystal Growth, vol. 510, pp. 65-75, 2019. Available: 10.1016/j.jcrysgro.2019.01.014 DOI: https://doi.org/10.1016/j.jcrysgro.2019.01.014
P. Hansson, J. Werner, L. Tapfer, L. Tilly and E. Bauser, "Liquid‐phase epitaxy and characterization of Si1−xGexlayers on Si substrates", Journal of Applied Physics, vol. 68, no. 5, pp. 2158-2163, 1990. Available: 10.1063/1.346572 DOI: https://doi.org/10.1063/1.346572
. S. Chaurasia, S. Raghavan and S. Avasthi, "High Quality Epitaxial Germanium on Si (110) using Liquid Phase Crystallization for Low—Cost III-V Solar-Cells", 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), 2018. Available: 10.1109/pvsc.2018.8548031 DOI: https://doi.org/10.1109/PVSC.2018.8548031
. G. Wang et al., "A model of threading dislocation density in strain-relaxed Ge and GaAs epitaxial films on Si (100)", Applied Physics Letters, vol. 94, no. 10, p. 102115, 2009. Available: 10.1063/1.3097245 DOI: https://doi.org/10.1063/1.3097245
. J. Speck, M. Brewer, G. Beltz, A. Romanov and W. Pompe, "Scaling laws for the reduction of threading dislocation densities in homogeneous buffer layers", Journal of Applied Physics, vol. 80, no. 7, pp. 3808-3816, 1996. Available: 10.1063/1.363334 DOI: https://doi.org/10.1063/1.363334
. E. Fitzgerald et al., "Totally relaxed GexSi1−x layers with low threading dislocation densities grown on Si substrates", Applied Physics Letters, vol. 59, no. 7, pp. 811-813, 1991. Available:10.1063/1.105351 DOI: https://doi.org/10.1063/1.105351
. A. O'Reilly and N. Quitoriano, "Reduction of threading dislocation density in SiGe epilayer on Si (0 0 1) by lateral growth liquid-phase epitaxy", Journal of Crystal Growth, vol. 483, pp. 223-227, 2018. Available: 10.1016/j.jcrysgro.2017.12.010. DOI: https://doi.org/10.1016/j.jcrysgro.2017.12.010
A. Saidov and A. Razzokov, "Preparation and Morphological Studies of Epitaxial Layers of a Solid Solution Si1–xGex", Siberian Journal of Physics, vol. 15, no. 2, pp. 84-91, 2020. Available: 10.25205/2541-9447-2020-15-2-84-91 DOI: https://doi.org/10.25205/2541-9447-2020-15-2-84-91
. Victor I. Fistul. Impurities in Semiconductors: Solubility, Migration and Interactions, CRC Press. 2004. DOI: https://doi.org/10.4324/9780203299258
. Gaskell, D.R., & Laughlin, D.E. Introduction to the Thermodynamics of Materials (6th ed.). CRC Press. 2017.
. S.Uda, X.Huang, S.Koh. Journal of Crystal Growth, vol. 281, pp. 481–491, 2005. DOI: https://doi.org/10.1016/j.jcrysgro.2005.04.072
. Liu, X. Y. "Heterogeneous nucleation or homogeneous nucleation?". The Journal of Chemical Physics, vol. 112 no. 22, pp. 9949–9955, 2000. Available: 10.1063/1.481644. DOI: https://doi.org/10.1063/1.481644
. Razzokov, A.Sh., Khakimov, N.Z., Davletov, I.Y., Eshchanov, Kh.O. and Matnazarov, A.R. "Obtaining a structurally perfect semiconductor solid solution Si1-xGex with electrophysical and photoelectric properties,"Scientific-technical journal: vol. 24: Iss. 5, pp. 11, 2020. Available at: https://uzjournals.edu.uz/ferpi/vol24/iss5/11
. Arthur D. Pelton. Phase Diagrams and Thermodynamic Modeling of Solutions, Elsevier, 2019. DOI:10.1016/C2013-0-19504-9 DOI: https://doi.org/10.1016/C2013-0-19504-9
. Hans J. Scheel, T. Fukuda. “Crystal Growth Technology”, Wiley & Sons, Chichester UK hardcover, 2003. DOI: https://doi.org/10.1002/0470871687
. Nguyen T. K. Thanh, N. Maclean, and S. Mahiddine, Mechanisms of Nucleation and Growth of Nanoparticles in Solution, Chemical Reviews, 114(15), pp. 7610-7630, 2014. DOI: https://doi.org/10.1021/cr400544s
. Ivan Markov. Crystal Growth For Beginners: Fundamentals of Nucleation, Crystal Growth And Epitaxy (Third ed.). Singapore: World Scientific, 2016. DOI: 10.1142/10127 DOI: https://doi.org/10.1142/10127
ดาวน์โหลด
เผยแพร่แล้ว
วิธีการอ้างอิง
ฉบับ
บท
การอนุญาต
ลิขสิทธิ์ (c) 2022 Journal of Metals, Materials and Minerals
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.