Dependence of electrical resistivity on plastic deformation in copper-aluminum alloy Cu0.975Al0.025

Authors

  • J.G. Miranda Ramos San Marcos University
  • E. Medrano Atencio San Marcos University
  • M. Quiroga Agurto San Marcos University
  • F.A. Reyes Navarro San Marcos University

Abstract

We measure changes of electrical resistivity after a plastic deformation. We supposed that the changes are due to a large density of dislocation present in the polycrystalline samples; therefore, we also measure the amount of dislocations after the plastic deformation. Thus, for our aim, we elaborated copper-aluminum alloys Cu0.975Al0.025; next, with them, we fabricated metallographic specimens, which were submitted to traction subsequently. We measured the electrical resistivity before and after the traction. The obtained results are discussed in a theoretical framework of dislocations.

Downloads

Download data is not yet available.

References

Pavlov, P.V. and Jojlov, A.F. (1987). Física del estado sólido (Solid state physics). Mir Publishers Moscow.

Koehler, J.S. (1949). A calculation of the changes in the conductivity of metals produced by Cold-Work. Phys. Rev. 75(1) : 106.

Mackenzie, J.K. and Sondheimer, E.H. (1950). The theory of the change in the conductivity of metals produced by cold work. Phys. Rev. 77(2) : 26.

Landauer, R. (1951). Conductivity of cold worked metals. Phys. Rev. 82(4) : 520.

Dexter, D. L. (1952). Scattering of electrons in metals by dislocations. Phys. Rev. 86(5) : 760. Dexter, D.L. (1952). Conductivity of cold-worked metals. Phys. Rev. 85(5) : 936.

Macchioni, C., Rayne, J.A., and Bauer, C.L. (1982). Low-temperature resistivity of bulk copper- aluminum alloys. Phys. Rev. B. 25(6) : 3865.

Gupta, R.P. (1987). Residual resistivity of defects in metals. Phys. Rev. B. 35(11) : 5431.

Bian, Q. and Niewczas, M. (2016). Theory of magnetoresistance due to lattice dislocations in face-centred cubic metals. Philosophical Magazine. 96(17) : 1832–1860. Niewczas, M. (2014). Intermittent plastic flow of single crystals: central problems in plasticity: a review. Materials Science and Technology, 30(7) : 739–757.

Miranda Ramos, J.G. 2006. Licentiate Thesis entitled Resistividad eléctrica en función de la deformación plástica de la aleación de cobre con aluminio (Electric resistivity as a function of the plastic deformation of copper-aluminum alloy),UNMSM, Lima, Peru

Kuzmin, B.A., and Samojotski, A.I. (1986). Metalurgia, metalografía y materiales de construcción (Metallurgy, metallography and special-purpose materials). Mir Publishers, Moscow.

Lajtin, Y.M. (1973). Metalografía y tratamiento térmico de los metales (Metallography and heat treatment of metals). Mir Publishers Moscow.

Castillo, M.R. (2007). El Aluminio: Aspectos generales (Aluminum: General aspects). Universidad Bolivariana de losTrabajadores, Centro de Formación RIALCA, Venezuela. https://ubtjrialca.files.wordpress.com/2 012/02/elaluminio_y_su_desarrolloactu al1.pdf

AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Cracow, Poland. 2016. http://www.conductivity-app.org/singlearticle/cu-overview

Heaney, M. B. 1999. Electrical conductivity and resistivity IN ''Measurement, instrumentation, and sensors handbook CRCnetBase'' (Section VII: Electromagnetic Variables Measurement), Ed. John G.Webster. http://www.kelm.ftn.uns.ac.rs/literatur a/si/pdf/ Measurement%20Instrumentation%20 Sensors.pdf

Reed-Hill, R. E. 1971. Principio de metalurgia física (Principles of physical metallurgy). Editorial Continental S.A. México, España, Argentina, Chile.

Downloads

Published

2017-01-17

How to Cite

[1]
J. Miranda Ramos, E. Medrano Atencio, M. Quiroga Agurto, and F. Reyes Navarro, “Dependence of electrical resistivity on plastic deformation in copper-aluminum alloy Cu0.975Al0.025”, J Met Mater Miner, vol. 26, no. 2, Jan. 2017.

Issue

Section

Original Research Articles

Most read articles by the same author(s)