Review of materials, functional components, fabrication technologies and assembling characteristics for polymer electrolyte membrane fuel cells (PEMFCs) – An update

Authors

  • Arun DAYA Department of Mechanical Engineering, School of Engineering and Technology, Karunya Institute of Technology and Sciences (Deemed to be University), Karunya Nagar, Coimbatore – 641 114, Tamil Nadu, India
  • Arputharaj SAMSON NESARAJ Department of Applied Chemistry, School of Sciences, Arts, Media and Management, Karunya Institute of Technology and Sciences (Deemed to be University), Karunya Nagar, Coimbatore – 641 114, Tamil Nadu, India; Department of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Anand Nagar, Krishnankoil – 626 126, Tamil Nadu, India

DOI:

https://doi.org/10.55713/jmmm.v33i4.1775

Keywords:

Fuel cells, PEMFC, Pt-based catalysts, Nafion nanocomposites, Feed gas

Abstract

Fuel cells use electrochemical processes to transform the chemical energy of a fuel into electrical energy, which is a key enabler for the shift to an H2-based economy. Because of their high energy conversion efficiency and low pollution emissions, fuel cells with polymer electrolyte membranes (PEMFCs) are regarded as being in frontline of commercialization for the transportation and automotive industries. However, there are two major hurdles to their future commercialization: cost and durability, which promote basic study and development of their components. In this article, we reviewed the materials, functional components, fabrication technologies and assembling characteristics related to PEMFCs. Platinum's significance as a catalyst in PEMFC applications stems from the fact that it beats all other catalysts in three critical parts: stability, selectivity, and activity. In order to create Pt rich surfaces of NPs, Pt metal is alloyed with d-block metals like Cu, Ni, Fe, and Co. PEMFC development is inextricably tied to the benefits and drawbacks of the Nafion membrane under various operating circumstances. Nafion membrane has some drawbacks, including poor performance at high temperatures (over 90℃), low conductivity under low humidification, and high cost. As a result, a variety of nanoscale additives are frequently added to Nafion nanocomposites to enhance the material's properties under fuel cell working conditions. Fiber composite based bipolar plates can deliver best performance. The assembly of PEMFC based on strap approach is being explored. The applications of PEMFC are also projected.

Downloads

Download data is not yet available.

Author Biographies

Arun DAYA, Department of Mechanical Engineering, School of Engineering and Technology, Karunya Institute of Technology and Sciences (Deemed to be University), Karunya Nagar, Coimbatore – 641 114, Tamil Nadu, India

IV B.Tech. Student,

Department of Mechanical Engineering,

Karunya Institute of Technology and Sciences

(Deemed to be University)

Karunya Nagar, Coimbatore - 641 114,

Tamil Nadu, India.

Arputharaj SAMSON NESARAJ, Department of Applied Chemistry, School of Sciences, Arts, Media and Management, Karunya Institute of Technology and Sciences (Deemed to be University), Karunya Nagar, Coimbatore – 641 114, Tamil Nadu, India; Department of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Anand Nagar, Krishnankoil – 626 126, Tamil Nadu, India

Professor,

Department of Chemistry,

School of Advnaced Sciences,

Kalasalingam Academy of Research and Education

(Deemed to be University),

Anand Nagar, Krishnankoil - 626 126, Tamil Nadu,

India.

References

R. A. Felseghi, E. Carcadea, M. S. Raboaca, C. N. Trufin, and C. Filote, “Hydrogen fuel cell technology for the sustainable future of stationary applications,” Energies, vol. 12, no. 23, p. 4593, 2019.

I. Staffell, D. P. Scamman, A. V. Abad, P. Balcombe, P. E. Dodds, P. Ekins, N. Shah, and K. Ward, “The role of hydrogen and fuel cells in the global energy system,” Energy and Environmental Sciences, vol. 12, no. 2, pp. 463-491, 2019.

D. R. Dekel, “Review of cell performance in anion exchange membrane fuel cells,” Journal of Power Sources, vol. 375, pp. 158-169, 2018.

P. Costamagna, and S. Srinivasan, “Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects,” Journal of Power Sources, vol. 102, pp. 253-269, 2001.

K. Prater, “The renaissance of the solid polymer fuel cell”, Journal of Power Sources, vol. 11, no. 1-2, pp. 239-250, 1990.

K. H. Choi, D. J. Park, Y. W. Rho, Y. T. Kho, and T. H. Lee, “A study of the internal humidification of an integrated PEMFC stack,” Journal of Power Sources, vol. 74, no. 1, pp. 146-150, 1998.

M. H. Gouda, M. Elnouby, A. N. Aziz, M. E. Youssef, D. M. F. Santos, and N. A. Elessawy, “Green and low-cost membrane electrode assembly for protonexchange membrane fuel cells: Effect of double-layer electrodes and gas diffusion layer,” Frontiers of Materials Science, vol. 6, p. 337, 2020.

S. Toghyani, S. A. Atyabi, and X. Gao, “Enhancing the specific power of a PEM fuel cell powered UAV with a novel bean-shaped flow field,” Energies, vol. 14, no. 9, p. 2494, 2021.

M. Marappan, K. Palaniswamy, T. Velumani, K. B. Chul, R. Velayutham, P. Shivakumar, and S. Sudaram, “Performance studies of proton exchange membrane fuel cells with different flow field designs – Review,” Chemical Record, vol. 21, pp. 663-714, 2021.

F. Ning, X. He, Y. Shen, H. Jin, Q. Li, D. Li, S. Li, Y. Zhan, Y. Du, J. Jiang, H. Yang, and X. Zhou, “Flexible and lightweight fuel cell with high specific power density,” ACS Nano, vol. 11, no. 6, pp. 5982-5991, 2017.

V. Mehta, and J. S. Cooper, “Review and analysis of PEM fuel cell design and manufacturing,” Journal of Power Sources, vol. 114, no. 1, pp. 32-53, 2003.

O. Erdinc, and M. Uzunoglu, “Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches,” Renewable and Sustainable Energy Reviews, vol. 14, no. 9, pp. 2874-2884, 2010.

J. W. Kulikowska, J. Wolska, and H. Koroniak, “Polymers application in proton exchange membranes for fuel cells (PEMFCs),” Physical Sciences Reviews, vol. 2, no. 8, p. 20170018, 2017.

J. H. Wee, “Applications of proton exchange membrane fuel cell systems,” Renewable and Sustainable Energy Reviews, vol. 11, no. 8, pp. 1720-1738, 2007.

R. E. Yonoff, G. V. Ochoa, Y. C. Escorcia, J. I. Silva-Ortega, and L. M. Stand, “Research trends in proton exchange membrane fuel cells during 2008-2018: A bibliometric analysis,” Heliyon, vol. 5, no. 5, p. e01724, 2019.

A. Baroutaji, A. Arjunan, M. Ramadan, J. Robinson, A. Alaswad, M. A. Abdelkareem, and A-G. Olabi, “Advancements and prospects of thermal management and waste heat recovery of PEMFC,” International Journal of Thermofluids, vol. 9, p. 100064, 2021.

H. L. Nguyen, J. Han, X. L. Nguyen, S. Yu, Y. M. Goo, and D. D Le, “Review of the durability of polymer electrolyte membrane fuel cell in long-term operation: Main Influencing parameters and testing protocols,” Energies, vol. 14, no. 13, pp. 4048, 2021.

X. Cheng, Z. Shi, N. Glass, L. Zjang, J. Zhang, D. Song, Z-S. Liu, H. Wang, and J. Shen, “A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation,” Journal of Power Sources, vol. 165, no. 2, pp. 739-756, 2007.

M. S. Habib, P. Arefin, M. A. Salam, K. Ahmed, S. Uddin, T. Hossain, N. Papri, and M. T. Islam, “Proton exchange membrane fuel cell (PEMFC) durability factors, challenges, and future perspectives: A detailed review,” Material Science Research India, vol. 18, no. 2, pp. 217-234, 2021.

D-H. Shin, and S-J. Kim, Electrochemical characteristics with NaCl concentrations on stainless steels of metallic bipolar plates for PEMFCs, Coating, vol. 13, no. 1, p. 109, 2023.

A. Kraytsberg, and Y. E. Eli, “Review of advanced materials for proton exchange membrane fuel cells,” Energy Fuels, vol. 28, no. 12, pp. 7303-7330, 2014.

K. Sopian, and W. R. W. Daud, “Challenges and future developments in proton exchange membrane fuel cells,” Renewable Energy, vol. 31, no. 5, pp. 719-727, 2006.

Y. Xing, H. Li, and G. Avgouropoulos, “Research progress of proton exchange membrane failure and mitigation strategies,” Materials (Basel), vol. 14, no. 10, p. 2591, 202l.

Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, “A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research,” Applied Energy, vol. 88, no. 4, pp. 981-1007, 2011.

J. Stumper, and C. Stone, “Recent advances in fuel cell technology at Ballard,” Journal of Power Sources, vol. 176, no. 2, pp. 468-476, 2008.

D. Y. Wang, and N. C. Shih, “Development of a lightweight fuel cell vehicle,” Journal of Power Sources, vol. 141, no. 1, pp. 108-115, 2005.

E. Ogungbemi, T. Wilberforce, O. Ijaodola, J.Thompson, and A. G. Olabi, “Review of operating condition, design parameters and material properties for proton exchange membrane fuel cells,” International Journal of Energy Research, vol. 45, no. 2, pp. 1227-1245, 2021.

H. Wang, R. Wang, S. Sui, T. Sun, Y. Yan, and S. Du, “Cathode design for proton exchange membrane fuel cells in automotive applications,” Automotive Innovation, vol. 4, pp. 144-164, 2021.

T. H. Oliver, and J. W. Stevenson, “The role of platinum in proton exchange membrane fuel cells,” Platinum Metals Review, vol. 57, no. 4, pp. 259-271, 2013.

K. S. Nagabhushana, C. Weidenthaler, S. Hocevar, D. Strmcnik, M. Gaberscek, A. L. Antozzi, and G. N. Martelli, “Preparation, characterization and properties of Pt-Cu co-reduced and Pt-on-Cu skin type bimetallic carbon-supported (Vulcan XC72) electrocatalysts,” Journal of New Materials for Electrochemical Systems, vol. 9, no. 2, pp. 73-81, 2006.

D. Banham, J. Zou, S. Mukerjee, Z. Liu, D. Yang, Y. Zhang, Y. Peng, and A. Dong, “Ultralow platinum loading proton exchange membrane fuel cells: Performance losses and solutions,” Journal of Power Sources, vol. 490, no. 4, pp. 229515, 2021.

L. Mølmen, K. Eiler, L. Fast, P. Leisner, and E. Pellicer, “Recent advances in catalyst materials for proton exchange membrane fuel cells, APL Materials, vol. 9, no. 4, p. 040702, 2021.

T. Yoshida, and K. Kojima, “Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society,” Electro-chemical Society Interface, vol. 24, no. 2, pp. 45-49, 2015.

J. Li, S. Sharma, X. Liu, Y-T. Pan, J. S. Spendelow, M. Chi, Y. Jia, P. Zhang, D. A. Cullen, Z. Xi, H. Lin, Z. Yin, B. Shen, M. Muzzio, C. Yu, Y. S. Kim, A. A. Peterson, K. L. More, H. Zhu, and S. Sun, “Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis,” Joule, vol. 3, no. 1, pp. 124-135, 2019.

Y. Gao, M. Hou, L. He, Q. Manman, H. Chen, W. Luo, and Z. Shao, “A Performance and durability-enhanced carbon-skeleton nanofiber electrode with Pt3Co/C for PEMFCs,” ACS Sustainable Chemistry & Engineering, vol. 8, no. 34, pp. 13030-13038, 2020.

B. Hu, X. Deng, L. Zhou, J. Dai, G. Yang, W. Tan, W. Zhou, and Z. Shao, “Facile synthesis of synergistic Pt/(Co-N)@C composites as alternative oxygen-reduction electrode of PEMFCs with attractive activity and durability,” Composites Part B: Engineering, vol. 193, p. 108012, 2020.

J. Sriwannaboot, A. Kannan, and N. Tantavichet, “Pulse-reverse electrodeposition of Pt–Co bimetallic catalysts for oxygen reduction reaction in acidic medium,” International Journal of Hydrogen Energy, vol. 45, no. 11, pp.7025-7035, 2020.

X. TianX. Zhao, Y-Q. Su, L. Wang, H. Wang, D. Dang, B. Chi, H. Liu, E. J. M. Hensen, X. W. D. Lou, and B. Y. Xia, “Engeering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells,” Science, vol. 6467, pp. 850-856, 2019.

P. Mardle, G. Thirunavukkarasu, S. Guan, Y. L. Chiu, and S. Du, “Comparative study of PtNi nanowire array electrodes toward oxygen reduction reaction by half-cell measurement and PEMFC test,” ACS Applied Materials and Interfaces, vol. 12, no. 38, pp. 42832-42841, 2020.

F. Kong, Z. Ren, M. N. Banis, L. Du, X. Zhou, G. Chen, L. Zhang, J. Li, S. Wang, M. Li, K. Doyle-Davis, Y. Ma, R. Li, A. P. Young, L. Yang, M. Markiewicz, Y. Tong, G. Tin, C. Y. Du, J. Luo, and X. Sun, “Active and stable Pt-Ni alloy octahedra catalyst for oxygen reduction via near-surface atomical engineering,” ACS Catalysis, vol. 10, no. 7, pp. 4205-4214, 2020.

S. Kühl, M. Gocyla, H. Heyen, S. Selve, M. Heggen, R. E. Dunin-Borkowski, and P. Stasser, “Concave curvature facets benefit oxygen electroreduction catalysis on octahedral shaped PtNi nanocatalysts,” Journal of Materials Chemistry A, vol. 7, no. 3, pp. 1149-1159, 2019.

J. Wang, X. Zhou, B. Li, D. Yang, H. Lv, Q. Xiao, P. Ming, X. Wei, and C. Zhang, “Highly efficient, cell reversal resistant PEMFC based on PtNi/C octahedral and OER composite catalyst,” International Journal of Hydrogen Energy, vol. 45, no. 15, pp. 8930-8940, 2020.

M. Gong, J. Zhu, M. Liu, P. Liu, Z. Deng, T. Shen, T. Zhao, R. Lin, Y. Lu, S. Yang, Z. Liang, S. M. Bak, E. Stavitski, Q. Wu, R. R. Adzic, H. L. Xin, and D. Wang, “Optimizing PtFe intermetallics for oxygen reduction reaction: From DFT screening to in-situ XAFS characterization,” Nanoscale, vol. 11, no. 42, pp. 20301-20306, 2019.

J. Choi, Y. J. Lee, D. Park, H. Jeong, S. Shin, H. Yun, J. Lim, J. Han, E. J. Kim, S. S. Jeon, Y. Jung, H. Lee, and B. J. Kim, “Highly durable fuel cell catalysts using crosslinkable block copolymer-based carbon supports with ultralow Pt loadings,” Energy and Environmental Sciences, vol. 13, no. 12, pp. 4921-4929, 2020.

H. Gao, S. Liao, Y. Zhang, X. Jia, L. Zhou, Z. Zheng, and Y. Yang, “Methanol tolerant SeˆPt/C: effects of Se content on the structure and electrocatalytic performance for oxygen reduction reaction,” Ionics, vol. 26, no. 2, pp. 1315-1323, 2020.

Q. Zhao, C. Wang, H. Wang, J. Wang, Y. Tang, Z. Mao, and K. Sasaki. “Synthesis of a high-performance low-platinum PtAg/C alloyed oxygen reduction catalyst through the gradual reduction method,” New Journal of Chemistry, vol. 44, no. 2, pp. 3728-3736, 2020.

M. Gatalo, F. Ruiz-Zepeda, N. Hodnik, G. Draˇzi´c, M. Bele, and M. Gaberˇsˇcek, “Insights into thermal annealing of highly-active PtCu3/C oxygen reduction reaction electrocatalyst: An in-situ heating transmission electron microscopy study,” Nano Energy, vol. 63, p. 103892, 2019.

J. Zhu, A. O. Elnabawy, Z. Lyu, M. Xie, E. A. Murray, X. Chen, W. Jin, M. Mavrikakis, and Y. Xia, “Facet-controlled Pt–Ir nanocrystals with substantially enhanced activity and durability towards oxygen reduction,” Materials Today, vol. 35, pp. 69-77, 2020.

J. Y. Park, H-S. Park, S-B. Han, D-H. Kwak, J-E. Won, T. Lim, and K-W. Park, “Organic ligand-free PtIr alloy nanostructures for superior oxygen reduction and evolution reactions,” Journal of Industrial and Engineering Chemistry, vol. 77, pp. 105-110, 2019.

Y. Feng, Q. Shao, F. Lv, L. Bu, J. Guo, S. Guo, and S. Huang, “Intermetallic PtBi nanoplates boost oxygen reduction catalysis with superior tolerance over chemical fuels,” Advanced Science, vol. 7, no. 1, p. 1800178, 2019.

L. Cao, Z. Zhao, Z. Liu, W. Gao, S. Dai, J. Gha, W. Xue, H. Sun, X. Duan, X. Pan, T. Mueller, and Y. Huang, “Differential surface elemental distribution leads to significantly enhanced stability of PtNi-based ORR catalysts,” Matter, vol. 1, no. 6, pp. 1567-1580, 2019.

X. Shen, W. Cai, Y. Pan, L. Yao, J. Yang, X. Q. Pan, J. Zeng, and Z. Peng,“Tuning electronic structure and lattice diffusion barrier of ternary Pt–In–Ni for both improved activity and stability properties in oxygen reduction electrocatalysis,” ACS Catalysis, vol. 9, no. 12, 2019.

Z. Wang, X. Yao, Y. Kang, D. Xia, and L. Gan, “Rational development of structurally ordered platinum ternary intermetallic electrocatalysts for oxygen reduction reaction,” Catalysts, vol. 9, no. 7, p. 569, 2019.

L. Huang, M. Wei, N. Hu, P. Tsiakaras, and P. K. Shen, “Molybdenum-modified and vertex-reinforced quaternary hexapod nanoskeletons as efficient electrocatalysts for methanol oxidation and oxygen reduction reaction,” Applied Catalysis B, vol. 258. p. 117974, 2019.

W. Tu, K. Chen, Z. Lujun, Z. Huachao, E. Binaj, X. Ke, C. Chen, M. Sui, Q. Chen, and Y. Li, “Tungsten-doping-induced surface reconstruction of porous ternary Pt-based alloy electrocatalyst for oxygen reduction,” Advanced Functional Materials, vol. 29, no. 7, p. 1807070, 2019.

L. Giorgi, and F. Leccese, “Fuel cells: Technologies and applications,” The Open Fuel Cells Journal, vol. 6, pp. 1-20, 2013.

T. Chu, M. Xie, D. Yang, P. Ming, B. Li, and C. Zhang, “Highly active and durable carbon support Pt-rare earth catalyst for proton exchange membrane fuel cell,” International Journal of Hydrogen Energy, vol. 45, no. 51, pp. 27291-27298, 2020.

C. M. Sanchez-Sanchez, J. Solla-Gullon, F. J. Vidal-Iglesias, A. Aldaz, V. Montiel, and E. Herrero, “Imaging structure sensitive catalysis on different shape controlled platinum nanoparticles,” Journal of American Chemical Society, vol. 132, no. 16, pp. 5622 -5624, 2010.

R. Chen, Z. Cao, Z. Lyu, M. Xie, Y. Shi, and Y. Xia, “Continuous and scalable synthesis of Pt multipods with enhanced electro-catalytic activity toward the oxygen reduction reaction,” ChemNanoMat, vol. 5, no. 5, pp. 599-605, 2019.

M. H.Gouda, M. Elnouby, A. N. Aziz, M. E. Yossef, D. M. F. Santos, and N. A. Elessawy, “Green and low-cost membrane electrode assembly for proton exchange membrane fuel cells: Effect of double-layer electrodes and gas diffusion layer,” Frontiers in Materials, vol. 6, p. 337, 2020.

Y, Irmawati, Indriyati, and A. Oemry, “Effect of hot pressing temperature on the performance of proton exchange membrane fuel cell based on gas diffusion electrode carbon paper and carbon cloth”, Indonesian Journal of Materials Science, vol. 14, no. 2, pp. 85-90, 2013.

M. H. Gouda, M. Elnouby, A. N. Aziz, M. E. Youssef, D. M. G. Santos, and N. A. Elessawy, Green and low-cost membrane electrode assembly for proton exchange membrane fuel cells: Effect of double-layer electrodes and gas diffusion layer, Frontiers in Materials, vol. 6, 2020.

E. Şengül, S. Erkan, İ. [idot] Eroğlu, and N. Baç, Effect of gas diffusion layer characteristics and addition of pore-forming agents on the performance of polymer electrolyte membrane fuel cells, Chemical Engineering Communications, vol. 196, no. 1-2, pp. 161-170

T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, “Polymer electrolyte fuel cell model,” Journal of Electrochemical Society, vol. 138, no. 8, pp. 2334-2342, 1991.

K. Prater, “Polymer electrolyte fuel cells: a review of recent developments,” Journal of Power Sources, vol. 51, no. 1-2, pp. 129-144, 1994.

T. A. Zawodzinski, J. Davey, J. Valerio, and S. Gottesfeld, “The water content dependence of electro-osmotic drag in proton-conducting polymer electrolytes,” Electrochimica Acta, vol. 40, no. 3, pp. 297-302, 1995.

S. A. Grot, “Fuel cell stack compression method and apparatus,” U.S. Patent 6428921 B1, Aug. 6, 2002.

J. Rozière, and D. J. Jones, “Non-fluorinated polymer materials for proton exchange membrane fuel cells,” Annual Review of Materials Research, vol. 33, pp. 503-555, 2003.

W. T. Grubb, “Ionic migration in ion-exchange membranes,” Journal of Physical Chemistry, vol. 63, no. 1, pp. 55-58, 1959.

W. T. Grubb, and L. W. Niedrach, “Batteries with solid ion‐exchange membrane electrolytes: II. Low‐temperature hydrogen‐ oxygen fuel cells,” Journal of Electrochemical Society, vol. 107, no. 2, pp. 131-134, 1960.

A. K. Shukla, and R. K. Raman, “Methanol-resistant oxygen- reduction catalysts for direct methanol fuel cells,” Annual Review of Materials Research, vol. 33, pp. 155-168, 2003.

K. A. Mauritz, and R. B. Moore, “State of understanding of Nafion,” Chemical Reviews, vol. 104, no. 10, pp. 4535-4586, 2004.

E. Chalkova, M. V. Fedkin, D. J. Wesolowski, and S. N. Lvov, “Effect of TiO2 surface properties on performance of Nafion-based composite membranes in high temperature and low relative humidity PEM fuel cells,” Journal of Electrochemical Society, vol. 152, no. 9, pp. A1742-A1747, 2005.

B. Smitha, S. Sridhar, and A. A. Khan, “Solid polymer electrolyte membranes for fuel cell applications—A review,” Journal of Membrane Science, vol. 259, no. 1-2, pp. 10-26, 2005.

D. E. Moilanen, I. R. Piletic, and M. D. Fayer, “Tracking water’s response to structural changes in nafion membranes,” Journal Physical Chemistry A, vol. 110, no. 29, pp. 9084-9088, 2006.

S. S. Ozdemir, M. G. Buonomenna, and E. Drioli, “Catalytic polymeric membranes: Preparation and application,” Applied Catalysis A: General, vol. 307, no. 2, pp. 167-183, 2006.

M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, “Alternative polymer systems for proton exchange membranes (PEMs),” Chemical Reviews, vol. 104, no. 10, pp. 4587-4612, 2004.

B. Narayanamoorthy, K. K. R. Datta, and S. Balaji, “Kinetics and mechanism of electrochemical oxygen reduction using Pt/clay/Nafion catalyst layer for polymer electrolyte membrane fuel cells,” Journal of Colloid and Interface Science, vol. 387, pp. 213-220, 2012.

B. Narayanamoorthy, K. K. R. Datta, M. Eswaramoorthy, and S. Balaji, “Improved oxygen reduction reaction catalyzed by Pt/clay/Nafion nanocomposite for PEM fuel cells,” ACS Applied Materials and Interfaces, vol. 4, no. 7, pp. 3620-3626, 2012.

A. K. Sahu, S. Pitchumani, P. Sridhar, and A. K. Shukla, “Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview,” Bulletin of Materials Science, vol. 32, pp. 285-294, 2009.

A. K. Sahu, G. Selvarani, S. Pitchumani, P. Sridhar, and A. K. Shukla, “A sol-gel modified alternative Nafion-silica composite membrane for polymer electrolyte fuel cells,” Journal of The Electrochemical Society, vol. 154, no. 2, pp. B123-B132, 2006.

Y. Patil, S. Sambandam, V. Ramani, and K.Mauritz, “Model studies of the durability of a titania-modified Nafion fuel cell membrane,” Journal of The Electrochemical Society, vol. 156, no. 9, pp. B1092-B1098, 2009.

A. K. Sahu, S. Pitchumani, P. Sridhar, and A. K. Shukla, “Co-assembly of a Nafion–mesoporous zirconium phosphate composite membrane for PEM fuel cells,” Fuel Cells, vol. 9, no. 2, pp. 139-147, 2009.

Y. L. Liu, Y. H. Su, C. M. Chang, Suryani, and D. M. Wang, “Preparation and applications of Nafion-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells,” Journal of Materials Chemistry, vol. 20, no. 21, pp. 4409-4416, 2010.

L. Mazzapioda, S. Panero, and M. A. Navarra, “Polymer electrolyte membranes based on Nafion and a superacidic inorganic additive for fuel cell applications,” Polymers, vol. 11, no. 5, p. 914, 2019.

P. Prapainainar, Z. Du, A. Theampetch, C. Prapainainar, P. Kongkachuichay, and S. M. Holmes, “Properties and DMFC performance of nafion/mordenite composite membrane fabricated by solution-casting method with different solvent ratio,” Energy, vol. 190, p. 116451, 2020.

V. Ramani, H. R. Kunz, and J. M. Fenton, “Investigation of Nafion®/HPA composite membranes for high temperature/ low relative humidity PEMFC operation,” Journal of Membrane Science, vol. 232, no. 1-2, pp. 31-44, 2004.

Y. Z. Fu, and A. Manthiram, “Nafion–imidazole– H3PO4 composite membranes for proton exchange membrane fuel cells,” Journal of The Electrochemical Society, vol. 154, no. 1, pp. B8-B12, 2007.

T. Higashihara, K. Matsumoto, and M. Ueda, “Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells,” Polymer, vol. 50, no. 23, pp. 5341-5357, 2009.

A. Hermann, T. Chaudhuri, and P. Spagnol, “Bipolar plates for PEM fuel cells: A review,” International Journal Hydrogen Energy, vol. 30, no. 12, pp. 1297-1302, 2005.

Y. D. Kuan, C. W. Ciou, M. Y. Shen, C. K. Wang, R. Z. Fitriani, and C. Y. Lee, “Bipolar plate design and fabrication using graphite reinforced composite laminate for proton exchange membrane fuel cells,” International Journal Hydrogen Energy, vol. 46, no. 31, pp. 16801-16814, 2021.

X. Zhang, H. Huang, J. Fan, Y. Niu, L. Fan, S. Xu, and H. Li, “Gradient structured composite bipolar plates for proton exchange membrane fuel cells,” ACS Sustainable Chemistry & Engineering, vol. 10, no. 48, pp. 15846-15856, 2022.

W. L. Wang, S. M. He, and C. H. Lan, “Protective graphite coating on metallic bipolar plates for PEMFC applications,” Electrochimica Acta, vol. 62, pp. 30-35, 2012.

T. Novalin, B.Eriksson, S. Proch, U. Bexell, C. Moffatt, J. Westlinder, C. Lagergren, G. Lindbergh, and R. W. Lindstrom, “Trace-metal contamination in proton exchange membrane fuel cells caused by laser-cutting stains on carbon-coated metallic bipolar plates,” International Journal of Hydrogen Energy, vol. 46, no. 26, pp. 13855-13864, 2021.

R. Włodarczyk, “Corrosion analysis of graphite sinter as bipolar plates in the low-temperature PEM fuel cell simulated environments,” Journal of Solid State Electrochemistry, vol. 26, no. 1, pp. 39-47, 2022.

E. Planes, L. Flandin, and N. Alberola, “Polymer composites bipolar plates for PEMFCs,” Energy Procedia, vol. 20, pp. 311-323, 2012.

H. Chen, X. H. Xia, L. Yang, Y. D. He, and H. B. Liu, “Preparation and characterization of graphite/resin composite bipolar plates for polymer electrolyte membrane fuel cells,” Science and Engineering of Composite Materials, vol. 23, no. 1, pp. 21-28, 2016.

C. Hui, L. Hong-bo, Y. Li, and Y. D. He, “Effects of resin type on properties of graphite/polymer composite bipolar plate for proton exchange membrane fuel cell,” Journal of Materials Research, vol. 26, pp. 2974-2979, 2011.

V. Roda, J. Carroquino, L.Valiño, A. Lozano, and F. Barreras, “Remodeling of a commercial plug-in battery electric vehicle to a hybrid configuration with a PEM fuel cell,” International Journal of Hydrogen Energy, vol. 43, no. 35, pp. 16959-16970, 2018.

J. C. Kurnia, A. P. Sasmito, and T. Shamim, “Performance evaluation of a PEM fuel cell stack with variable inlet flows under simulated driving cycle conditions,” Applied Energy, vol. 206, pp. 751-764, 2017.

J. C. Kurnia, A. P. Sasmito, and T. Shamim, “Advances in proton exchange membrane fuel cell with dead-end anode operation: A review,” Applied Energy, vol. 252, p. 113416, 2019.

C. H. Woo, and J. B. Benziger, “PEM fuel cell current regulation by fuel feed control,” Chemical Engineering Science, vol. 62, no. 4, pp. 957-968, 2007.

P. Koski, J. Viitakangas, and J. Ihonen, “Determination of fuel utilisation and recirculated gas composition in dead-ended PEMFC systems,” International Journal of Hydrogen Energy, vol. 45, no. 43, pp. 23201-23226, 2020.

J. J. Hwang, “Effect of hydrogen delivery schemes on fuel cell efficiency,” Journal of Power Sources, vol. 239, pp. 54-63, 2013.

D. Jenssen, O. Berger, and U. Krewer, “Anode flooding characteristics as design boundary for a hydrogen supply system for automotive polymer electrolyte membrane fuel cells,” Journal of Power Sources, vol. 298, pp. 249-258, 2015.

F. Migliardini, T. M. Di Palma, M. F. Gaele, and P. Corbo, “Hydrogen purge and reactant feeding strategies in self-humidified PEM fuel cell system,” International Journal of Hydrogen Energy, vol. 42, no. 3, pp. 1758-1765, 2017.

S. Erbach, S. Epple, M. Heinen, G. Toth, M. Klages, D. Gaudreau, M. Ages, and A. Putz, “CO2 enrichment in anode loop and correlation with CO poisoning of low Pt anodes in PEM fuel cells,” Fuel Cells, vol. 18, no. 5, pp. 613-618, 2018.

B. Shabani, M. Hafttananian, S. Khamani, A. Ramiar, and A. A. Ranjbar, “Poisoning of proton exchange membrane fuel cells by contaminants and impurities: Review of mechanisms, effects, and mitigation strategies,” Journal of Power Sources, vol. 427, pp. 21-48, 2019.

O. A. Alo, I. O. Otunniyi, and H. Pienaar, “Manufacturing methods for metallic bipolar plates for polymer electrolyte membrane fuel cell,” Materials and Manufacturing Processes, vol. 34, no. 3, pp. 927-955, 2019.

T. Frey, and M. Linardi, “Effects of membrane electrode assembly preparation on the polymer electrolyte membrane fuel cell performance,” Electrochimica Acta, vol. 50, no. 1, pp. 99-105, 2004.

S. Shahgaldi, I. Alaefour, G. Unsworth, and X. Li, “Development of a low temperature decal transfer method for the fabrication of proton exchange membrane fuel cells,” International Journal of Hydrogen Energy, vol. 42, no. 16, pp. 11813-11822, 2017.

N. Rajalakshmi, and K. S. Dhathathreyan, “Catalyst layer in PEMFC electrodes—Fabrication, characterisation and analysis,” Chemical Engineering Journal, vol. 129, no. 1-3, pp. 31-40, 2007.

A. Mehmood, M. An, and H. Y. Ha, “Tailoring cathode structure of catalyst coated membranes for performance enhancement in direct methanol fuel cells,” International Journal of Hydrogen Energy, vol. 41, no. 46, pp. 21366-21374, 2016.

C. Yang, N. Han, Y. Wang, X-Z. Yuan, J. Xu, H. Huang, J. Fan, H. Li, and H. Wang, “A novel approach to fabricate membrane electrode assembly by directly coating the nafion ionomer on catalyst layers for proton-exchange membrane fuel cells,” ACS Sustainable Chemistry & Engineering, vol. 8, no. 26, pp. 9803-9812, 2020.

N. H. Jawad, A. A. Yahya, A. Ai-Shathr, H. G. Salih, K. T. Rashid, S. Al-Saadi, A. A. Abdulrazak, I. K. Salih, A. Zrelli, and Q. Alsalhy, “Fuel cell types, properties of membrane, and operating conditions: A review,” Sustainability, vol. 14, no. 21, p.14653, 2022.

A. Biyikoglu, and H. Oztoprak, “Enhancement of cell characteristics via baffle blocks in a proton exchange membrane fuel cell,” Sadhana, vol. 37, no. 2, pp. 207-222, 2012.

A. Tang, L. Crisci, L. Bonville, and J. Jankovic, “An overview of bipolar plates in proton exchange membrane fuel cells,” Journal of Renewable and Sustainable Energy, vol. 13, p. 022701, 2021.

N. Guo, and M. C. Leu, “Performance investigation of polymer electrolyte membrane fuel cells using graphite composite plates fabricated by selective laser sintering,” Journal of Fuel Cell Science and Technology, vol. 11, no. 1, p. 011003, 2014.

S. R. Dhakate, R. B. Mathur, B. K. Kakati, and T. L. Dhami, “Properties of graphite-composite bipolar plate prepared by compression molding technique for PEM fuel cell,” International Journal of Hydrogen Energy, vol. 32, pp. 4537-4543, 2007.

S. A. Ghadhban, W. H. Alawee, and D. H. Dhahad, “Study effects of bio-inspired flow filed design on polymer electrolyte membrane fuel cell performance,” Case Studies in Thermal Engineering, vol. 24, p.100841, 2021.

C. Y. Jung, W. J. Kim, and S. C. Yi, “Optimization of catalyst ink composition for the preparation of a membrane electrode assembly in a proton exchange membrane fuel cell using the decal transfer,” International Journal of Hydrogen Energy, vol. 37, no. 23, pp. 18446 -18454, 2012.

E. B. Creel, K. Tjiptowidjojo, J. A. Lee. K. M. Lovingston, P. R. Schunk, N. S. Bell, A. Serov, D. L. Wood III,“Slot-die-coating operability windows for polymer electrolyte membrane fuel cell cath ode catalyst layers,” Journal of Colloid and Interface Science, vol. 610, pp. 474-485, 2022.

P. Zhou, C. W. Wu, and G. J. Ma, “Contact resistance prediction and structure optimization of bipolar plates,” Journal of Power Sources, vol. 159, no. 2, pp. 1115-1122, 2006.

D. Liu, X.Lai, J. Ni, L. Peng, S. Lan, and Z. Lin, “Robust design of assembly parameters on membrane electrode assembly pressure distribution,” Journal of Power Sources, vol. 172, no. 2, pp. 760-767, 2007.

S. J. Lee, C. D. Hsu, and C. H. Huang, “Analyses of the fuel cell stack assembly pressure,” Journal of Power Sources, vol. 145, no. 2, pp. 353-361, 2005.

X. Q. Xing, K. W. Lum, H. J. Poh, and Y. L. Wu, “Optimization of assembly clamping pressure on performance of proton-exchange membrane fuel cells,” Journal of Power Sources, vol. 195, no. 1, pp. 62-68, 2010.

L. Fan, Z. Tu, and S. H. Chan, Recent development of hydrogen and fuel cell technologies: A review, Energy Reports, vol. 7, pp. 8241-8446, 2021.

J. Wang, H. Wang and Y. Fan, “Techno-economic challenges of fuel cell commercialization,” Engineering, vol. 4, no. 3, pp. 352-360,

B. Liu, M. Y. Wei, G. J. Ma, W. Zhang, and C. W. Wu, “Stepwise optimization of endplate of fuel cell stack assembled by steel belts,” International Journal of Hydrogen Energy, vol. 41, no. 4, pp. 2911-2918, 2016.

S. Asghari, B. Fouladi, N. Masaeli, and B. F. Imani, “Leak diagnosis of polymer electrolyte membrane fuel cell stacks,” International Journal of Hydrogen Energy, vol. 39, no. 27, pp. 14980-14992, 2014.

B. Andreas-Schott, A. Chinnici, Y. H. Lai, and G. W. Fly, “Fuel cell compression retention system using compliant strapping,” U.S. Patent 20110217617A1, Sep. 8, 2011.

B. Andreas-Schott, J. A. Rock, G. W. Fly, and T. P. Migilore, “Fuel cell stack compression retention system using overlapping sheets,” U.S. Patent 20080311457A1, Dec. 18, 2008.

T. D. Bogumil, E. J. Connor, A. G. Chinnici, P. F. Spacher, and M. W. Keyser, “Side spring compression retention system,” U.S. Patent 8012648B2, Sep. 6, 2011.

W. G. Grot, “Discovery and development of Nafion perfluorinated membranes,” Chemistry & Industry, vol. 19, pp. 647-649, 1985.

R. H. Barton, “Fuel cell stack and compression system therefor,” US patent 2013/0273452A1, Oct. 17, 2013.

S. A. Grot, “Fuel cell stack compression method and apparatus,” US Patent 6428921B1, Aug. 6, 2002.

P. D. Hood, “Fuel cell stack assembly,” US Patent 9774056B2, Sep. 26, 2017.

K. L. Mease, A. K. Brunner, L. A. Pitts, and A. F. Winslow, “Clamping apparatus and method for a fuel cell,” US Patent 6218039B1, Apr. 17, 2001.

J. P. Allen, “Fuel cell stack assembly,” US Patent 6670069B2, Dec. 30, 2003.

N. B. Peace, A. Newbold, and P. D. Hood, “Fuel cell compression assembly,” US Patent 7435501B2, Oct. 14, 2008.

J. H. Wee, “Applications of proton exchange membrane fuel cell systems,” Renewable and Sustainable Energy Reviews, vol. 11, no. 8, pp. 1720-1738, 2007.

S. G. Chalk, J. F. Miller, and F. W. Wagner, “Challenges for fuel cells in transport applications,” Journal of Power Sources, vol. 86, no. 1-2, pp. 40-51, 2000.

S. Liguori, K. Kian, N. Buggy, B. H. Anzelmo, and J. Wilcox, “Opportunities and challenges of low-carbon hydrogen via metallic membranes,” Progress in Energy and Combustion Science, vol. 80, p. 100851, 2020.

K. G. Logan, J. D. Nelson, and A. Hastings, “Electric and hydrogen buses: Shifting from conventionally fuelled cars in the UK,” Transportation Research Part D: Transport and Environment, vol. 85, p. 102350, 2020.

A. Alaswad, A. Baroutaji, H. Achour, J. Carton, A. Al Makky, and A. G. Olabi, “Developments in fuel cell technologies in the transport sector,” International Journal of Hydrogen Energy, vol. 41, no. 37, pp. 16499-16508, 2016.

O. Z. Sharaf, and M. F. Orhan, “An overview of fuel cell technology: Fundamentals and applications,” Renewable and Sustainable Energy Reviews, vol. 32, pp. 810-853, 2014.

N. Dyantyi, A. Parsons, C. Sita, and S. Pasupathi, “PEMFC for aeronautic applications: A review on the durability aspects,” Open Engineering, vol. 7, no. 1, pp. 287-302, 2017.

Lailianfeng, and C. Ting-chenge, “Research and optimization fuel cell and battery hybrid bus system parameters based on genetic algorithm,” Microsystem Technologies, vol. 27, pp. 1827-1836, 2021.

Nishizawa, A. J. Kallo, O. Garrot, and J. W. Ungethüm, “Fuel cell and Li-ion battery direct hybridization system for aircraft applications,” Journal of Power Sources, vol. 222, pp. 294-300, 2013.

Downloads

Published

2023-12-13

How to Cite

[1]
A. DAYA and A. SAMSON NESARAJ, “Review of materials, functional components, fabrication technologies and assembling characteristics for polymer electrolyte membrane fuel cells (PEMFCs) – An update”, J Met Mater Miner, vol. 33, no. 4, p. 1775, Dec. 2023.

Issue

Section

Review Articles