Development of ceramic based novel materials for application in low temperature solid oxide fuel cell (LTSOFC) – A critical review
Materials for LTSOFC
DOI:
https://doi.org/10.55713/jmmm.v35i2.2019Keywords:
Fuel cell, SOFC, Low temperature, Nano-ceramic materials, Fabrication techniques, EvaluationAbstract
In the field of renewable energy, fuel cell research has emerged as a promising source of energy for the future. Fuel cells utilize fuels more efficiently compared to other energy generation systems. Solid oxide fuel cell (SOFC) systems are gaining prominence due to their applications in military operations, mobile power supplies, and stationary power generation. Significant research efforts are being made to lower the operating temperature of SOFCs from 1000℃ to approximately 600℃, leading to the development of low-temperature solid oxide fuel cells (LTSOFCs). This is being achieved by selecting alternative electrode and electrolyte materials, particularly ceramics, to enhance their application effectiveness. To ensure the efficient utilization of LTSOFCs, new nanocomposite materials with superior performance characteristics are essential. Research has focused on NiO-based anodes, perovskite-based cathodes, and ceria-based electrolytes for LTSOFC applications. Intercell connectors suitable for low-temperature SOFCs have also been explored. In addition to developing new materials, innovative fabrication technologies, such as dip coating, have been investigated. This article discusses recent trends in the development of novel materials and technologies aimed at advancing LTSOFC research and development, as well as its potential commercialization in the near future.
Downloads
References
I. Garbayo, V. Esposito, S. Sanna, A. Morata, D. Pla, L. Fonseca, N. Sabate, and A. Tarancón, “Porous La0.6Sr0.4CoO3−δ thin film cathodes for large area micro solid oxide fuel cell power generators,” Journal of Power Sources, vol. 248, pp.1042-1049, 2014. DOI: https://doi.org/10.1016/j.jpowsour.2013.10.038
G. J. Acres, “Recent advances in fuel cell technology and its applications,” Journal of Power Sources, vol. 100, no. 1-2, pp. 60-66, 2001. DOI: https://doi.org/10.1016/S0378-7753(01)00883-7
S. Dey, A. Sreenivasulu, G. T. N. Veerendra, K. V. Rao and P. S. S. A. Babu, “Renewable energy present status and future potentials in India: An overview,” Innovation and Green Development, vol. 1, no. 1, p. 100006, 2022. DOI: https://doi.org/10.1016/j.igd.2022.100006
B. Zhu, L. Fan, and P. Lund, “Breakthrough fuel cell technology using ceria-based multi-functional nanocomposites,” Applied Energy, vol.106, pp. 163-175, 2013. DOI: https://doi.org/10.1016/j.apenergy.2013.01.014
A. E. Lutz, R. S. Larson, and J. O. Keller, “Thermodynamic comparison of fuel cells to the Carnot cycle,” International Journal of Hydrogen Energy, vol. 27, no. 10, pp. 1103-1111, 2002. DOI: https://doi.org/10.1016/S0360-3199(02)00016-2
U. Lucia, “Overview on fuel cells”, Renewable and Sustainable Energy Reviews, vol. 30, pp. 164-169, 2014. DOI: https://doi.org/10.1016/j.rser.2013.09.025
R. Li, Q. Wang, and L. Li, “Does renewable energy reduce per capita carbon emissions and per capita ecological footprint? New evidence from 130 countries,” Energy Strategy Reviews, vol. 49, p. 101121, 2023. DOI: https://doi.org/10.1016/j.esr.2023.101121
D. R. Lovley, “Microbial fuel cells: Novel microbial physiologies and engineering approaches”, Current Opinion in Biotechnology, vol. 17, no. 3, pp. 327-332, 2006. DOI: https://doi.org/10.1016/j.copbio.2006.04.006
L. Fan, Z. Tu, and S. H. Chan, “Recent development of hydrogen and fuel cell technologies: A review,” Energy Reports, vol. 7, pp. 8421- 446, 2021. DOI: https://doi.org/10.1016/j.egyr.2021.08.003
A. Choudhury, H. Chandra, and A. Arora, “Application of solid oxide fuel cell technology for power generation - A review,” Renewable and Sustainable Energy Reviews, vol. 20, pp. 430 442, 2013. DOI: https://doi.org/10.1016/j.rser.2012.11.031
A. Ali, M. Irshad, K. Siraj, R. Raza, A. Rafique, M. K. Ullah, A. Usman, P. Tiwari, B. Zhu, and A. Ali, “A brief description of high temperature solid oxide fuel cell's operation, materials, design, fabrication technologies and performance,” Journal of Applied Sciences, vol. 6, no. 3, pp.75, 2016. DOI: https://doi.org/10.3390/app6030075
W. Zhou, Z. Shao, R. Ran, W. Jin, and N. Xu, “A novel efficient oxide electrode for electrocatalytic oxygen reduction at 400–600℃,” Chemical Communications, vol. 44, pp. 5791-5793, 2008. DOI: https://doi.org/10.1039/b813327a
O. Corigliano, L. Pagnotta, and P. Fragiacomo, “On the technology of solid oxide fuel cell (SOFC) energy systems for stationary power generation: A review,” Sustainability, vol. 14, no. 22, p. 15276, 2022. DOI: https://doi.org/10.3390/su142215276
L. Carrette, K. A. Friedrich, and U. Stimming, “Fuel cells: principles, types, fuels and applications,” ChemPhysChem, vol. 1, no. 4, pp. 162-193, 2000. DOI: https://doi.org/10.1002/1439-7641(20001215)1:4<162::AID-CPHC162>3.0.CO;2-Z
R. M. Ormerod, “Solid oxide fuel cells,” Chemical Society Reviews, vol. 32, no. 1, pp. 17-28, 2003. DOI: https://doi.org/10.1039/b105764m
H. Lai, and T.A. Adams II, “Life cycle analyses of SOFC/gas turbine hybrid power plants accounting for long-term degradation effects,” Journal of Cleaner Production, vol. 412, p. 137411, 2023. DOI: https://doi.org/10.1016/j.jclepro.2023.137411
R. Raza, N. Akram, M. S. Javed, A. Rafique, K. Ullah, A. Ali, M. Saleem, and R. Ahmed, “Fuel cell technology for sustainable development in Pakistan – An overview,” Renewable and Sustainable Energy Reviews, vol. 53, pp. 450-461, 2016. DOI: https://doi.org/10.1016/j.rser.2015.08.049
A. T. Hamada, M. Fatih Orhan, and A. M. Kannan, “Alkaline fuel cells: Status and prospects,” Energy Reports, vol. 9, pp. 6396-6418, 2023. DOI: https://doi.org/10.1016/j.egyr.2023.05.276
B. C. H. Steele, and A. Heinzel, “Materials for fuel-cell technologies,” Nature, vol. 414, pp. 345-252, 2001. DOI: https://doi.org/10.1038/35104620
D. M. Bierschenk, J. R. Wilson, and S. A. Barnett, “High efficiency electrical energy storage using a methane–oxygen solid oxide cell,” Energy & Environmental Science, vol. 4, no. 3, pp. 944-951, 2011. DOI: https://doi.org/10.1039/C0EE00457J
C. Graves, S. D. Ebbesen, M. Mogensen, and K. S. Lackner, “Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy,” Renewable and Sustainable Energy Reviews, vol. 15, no. 1, pp. 1-23, 2011. DOI: https://doi.org/10.1016/j.rser.2010.07.014
A. N. Busawon, D. Sarantaridis, and A. Atkinson, “Ni infiltration as a possible solution to the redox problem of SOFC anodes,” Electrochemical and Solid-State Letters, vol. 11, no. 10, p. B186, 2008. DOI: https://doi.org/10.1149/1.2959078
S. B. Adler, “Factors governing oxygen reduction in solid oxide fuel cell cathodes,” Journal of Chemical Reviews, vol. 104, no. 10, pp. 4791-4844, 2004. DOI: https://doi.org/10.1021/cr020724o
J. Fleig, and J. Maier, “The polarization of mixed conducting SOFC cathodes: Effects of surface reaction coefficient, ionic conductivity and geometry,” Journal of the European Ceramic Society, vol. 24, no. 6, pp. 1343-1347, 2004. DOI: https://doi.org/10.1016/S0955-2219(03)00561-2
J. D. Kim, G. D. Kim, J. W. Moon, Y. I. Ark, W. H. lee, K. Kobayashi, M. Nagai, and C.E. Kim, “Characterization of LSM–YSZ composite electrode by ac impedance spectroscopy,” Solid State Ionics, vol. 143, no. 3-4, pp. 379-389, 2001. DOI: https://doi.org/10.1016/S0167-2738(01)00877-3
C. Brugnoni, U. Ducati, and M. Scagliotti, “SOFC cathode/ electrolyte interface. Part I: Reactivity between La0.85Sr0. 15MnO3 and ZrO2-Y2O3,” Solid State Ionics, vol. 76, no. 3-4, pp.177-182, 1995. DOI: https://doi.org/10.1016/0167-2738(94)00299-8
G. Chiodelli, and M. Scagliotti, “Electrical characterization of lanthanum zirconate reaction layers by impedance spectroscopy,” Solid State Ionics, vol. 73, no.3-4, pp. 265-271, 1994. DOI: https://doi.org/10.1016/0167-2738(94)90043-4
H. Y. Lee, and S.M. Oh, “Origin of cathodic degradation and new phase formation at the La0.9Sr0.1MnO3/YSZ interface,” Solid State Ionics, vol. 90, no. 1-4, pp.133-140, 1996. DOI: https://doi.org/10.1016/S0167-2738(96)00408-0
S. A. Speakman, R. D. Carneim, E. A. Payzant, and T. R. Armstrong, “Development of proton conductors using pyrochlore-perovskite phase boundaries,” Journal of Materials and Engineering, vol. 13, pp. 303-308, 2004. DOI: https://doi.org/10.1361/10599490419270
A. G. Mitterdorfer, and L. J. Gauckler, “La2Zr2O7 formation and oxygen reduction kinetics of the La0.85Sr0.15MnyO3, O2(g)| YSZ system,” Solid State Ionics, vol. 111, no. 3-4, pp. 185-218, 1998. DOI: https://doi.org/10.1016/S0167-2738(98)00195-7
B. Dalslet, P. Blennow, P. V. Hendriksen, N. Bonanos, D. Lybye and M. Mogensen, “Assessment of doped ceria as electrolyte,” Journal of Solid State Electrochemistry, vol.10, pp. 547-561, 2006. DOI: https://doi.org/10.1007/s10008-006-0135-x
V. V. Kharton, F. M. Marques, and A. Atkinson, “Transport properties of solid oxide electrolyte ceramics: a brief review,” Solid State Ionics, vol. 174, no. 1-4, pp. 135-149, 2004. DOI: https://doi.org/10.1016/j.ssi.2004.06.015
F. -Y. Wang, S. Chen, and S. Cheng, “Gd3+ and Sm3+ co-doped ceria based electrolytes for intermediate temperature solid oxide fuel cells,” Electrochemistry Communications, vol. 6, no. 8, pp. 743-746, 2004. DOI: https://doi.org/10.1016/j.elecom.2004.05.017
K. Schwarz, “Materials design of solid electrolytes,” Proceedings of the National Academy of Sciences, vol. 103, no. 10, pp. 3497, 2006. DOI: https://doi.org/10.1073/pnas.0600327103
D. A. Andersson, S. I. Simak, N. V. Skorodumova, I. A. Abrikosov, and B. Johansson, “Optimization of ionic conductivity in doped ceria,” Proceedings of the National Academy of Sciences, vol. 103, no. 10, pp.3518-3521, 2006. DOI: https://doi.org/10.1073/pnas.0509537103
H. Yahiro, K. Eguchi, and Arai H, “Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell,” Solid State Ionics, vol. 36, no. 1-2, pp. 71-75, 1989. DOI: https://doi.org/10.1016/0167-2738(89)90061-1
V. V. Kharton, F. M. Figueiredo, L. Navarro, E. N. Naumovich, A. V. Kovalevsky, A. A. Yaremchenko, A. P. Viskup, A. M. Carneiro, F. M. Marques, and A. J. Frade, “Ceria-based materials for solid oxide fuel cells,” Journal of Materials Science, vol. 36, pp.1105-1117, 2001. DOI: https://doi.org/10.1023/A:1004817506146
J. Zhang, C. Lenser, N. H. Menzler, and O. Guillon, “Comparison of solid oxide fuel cell (SOFC) electrolyte materials for operation at 500°C,” Solid State Ionics, vol. 344, p. 115138, 2020. DOI: https://doi.org/10.1016/j.ssi.2019.115138
E. Jud, and L. J. Gauckler, “The effect of cobalt oxide addition on the conductivity of Ce0.9Gd0.1O1.95,” Journal of Electroceramics, vol. 15, pp. 159-166, 2005. DOI: https://doi.org/10.1007/s10832-005-2193-3
A. Sin, Yu. Dubitsky, A. Zaopo, A. S. Arico, L. Gullo, D. La Rosa, S. Siiracusano, V. Antonucci, C. Oliva, and O. Ballabio, “Preparation and sintering of Ce1−xGdxO2−x/2 nanopowders and their electrochemical and EPR characterization”, Solid State Ionics, vol. 175, no. 1-4, pp. 361-366, 2004. DOI: https://doi.org/10.1016/j.ssi.2004.03.034
L. Zhang, J. Xiao, Y. Xie, Y. Tang, J. Liu, and M. Liu, “Behavior of strontium- and magnesium- doped gallate electrolyte in direct carbon solid oxide fuel cells,” Journal of Alloys and Compounds, vol. 608, no.2, pp. 272-277, 2014. DOI: https://doi.org/10.1016/j.jallcom.2014.04.154
S. I. Ahmad, “Nanostructured cerium oxide (ceria): electrolyte for IT-SOFC,” Journal of Nano Research, vol. 1, no. 1, pp. 11-13, 2018.
A. A. Yaremchenko, V. V. Kharton, E. N. Naumovich, and A. A. Vecher, “Oxygen ionic transport in Bi2O3-based oxides: The solid solutions Bi2O3–Nb2O5,” Journal of Solid State Electrochemistry, vol. 2, pp. 146-149, 1998. DOI: https://doi.org/10.1007/s100080050079
T. Ishihara, J. Yan, and H. Matsumoto, “High power SOFC using LaGaO3 based oxide electrolyte film prepared on porous metal substrate,” ECS Transactions, vol. 7, no. 1, pp. 435, 2007. DOI: https://doi.org/10.1149/1.2729121
N. Singh, O. Parkash, and D. Kumar, “Preparation and characterization of Al and La co-doped (Ce1− x− yAlxLayO2-(x+ y)/2) ceria”, Ionics, vol. 19, pp. 165-170, 2012. DOI: https://doi.org/10.1007/s11581-012-0698-8
Z. Gao, R. Raza, B. Zhu, Z. Mao, C. Wang and Z. Liu, “Preparation and characterization of Sm0.2Ce0. 8O1.9/Na2CO3 nanocomposite electrolyte for low-temperature solid oxide fuel cells,” International Journal of Hydrogen Energy, vol. 36, no. 6, pp. 3984-3988, 2011. DOI: https://doi.org/10.1016/j.ijhydene.2010.12.061
K. Kannan, D. Radhika, A. S. Nesaraj, M. W. Ahmed, and R. Namitha, “Cost-effective method of Co-doped rare-earth-based ceria (Y-CGO) nanocomposite as electrolyte for LT-SOFCs using C-TAB as surfactant,” Materials Research Innovations, vol. 24, no. 7, pp. 414-421, 2019. DOI: https://doi.org/10.1080/14328917.2019.1706032
J. Li, M. Yosaf, M. Akbar, A. Noor, H. Enyi, M. A. K. Y. Shah, Q. A. Sial, N. Mushtaq, and Y. Lu, “High-performing and stable semiconductor yttrium-doped gadolinium electrolyte for low-temperature solid oxide fuel cells,” Chemical Communications, vol. 59, no. 41, pp. 6223-6226, 2023. DOI: https://doi.org/10.1039/D2CC06904K
W. Sui, S. Ji, X. Ma, P. Zhang, J. Yan, Y. Tang, and Y. Liu, “A dual-layer electrolyte of CuFeO2–ZnO for low-temperature solid oxide fuel cells,” International Journal of Hydrogen Energy, vol. 50, no. 11, pp. 1126-1136, 2024. DOI: https://doi.org/10.1016/j.ijhydene.2023.10.067
Y. Liu, L. Zuo, Y. Ye, C. Jiang, D. Zheng, C. Liu, B. Wang, and X. Wang, “A novel yttrium stabilized zirconia and ceria composite electrolyte lowering solid oxide fuel cells working temperature to 400°C,” RSC Advances, vol. 13, no. 47, pp. 33430-33436, 2023. DOI: https://doi.org/10.1039/D3RA01507F
C. Xia , Y. Cai, B. Wang, M. Afzal, W. Zhang, A. Soltaninazarlou, and B. Zhu, “Strategy towards cost-effective low-temperature solid oxide fuel cells: A mixed-conductive membrane comprised of natural minerals and perovskite oxide,” Journal of Power Sources, vol. 342, pp. 779-786, 2017. DOI: https://doi.org/10.1016/j.jpowsour.2016.12.120
N. K. Singh, P. Singh, D. Kumar, and O. Parkash, “Electrical conductivity of undoped, singly doped, and co-doped ceria,” Ionics, vol. 18, pp. 127-134, 2011. DOI: https://doi.org/10.1007/s11581-011-0604-9
Z. Gong, W. Sun, J. Cao, D. Shan, Y. Wu, and W. Liu, “Ce0.8Sm0.2O1.9 decorated with electron-blocking acceptor-doped BaCeO3 as electrolyte for low-temperature solid oxide fuel cells,” Electrochimica Acta, vol. 228, pp. 226-232, 2017. DOI: https://doi.org/10.1016/j.electacta.2017.01.065
N. Radenahmad, A. Afif, J. I. Lee, M. Saqib, J.-Y. Park, J. Zaini, and A. K. Azad, “Electrochemical performance of a novel proton conducting electrolyte-based IT-SOFC,” ECS Transactions, vol. 91, no. 1, p. 971, 2019. DOI: https://doi.org/10.1149/09101.0971ecst
Y. Cui, R. Shi, J. Liu, H. Wang, and H. Li, “Yb2O3 doped Zr0.92Y0.08O2-α (8YSZ) and its composite electrolyte for intermediate temperature solid oxide fuel cells,” Materials (Basel), vol. 11, no. 10, pp. 1824, 2018. DOI: https://doi.org/10.3390/ma11101824
Y. Ma, M. Singh, X. Wang, F. Yang, Q. Huang, and B. Zhu, “Study on GDC-KZnAl composite electrolytes for low-temperature solid oxide fuel cells,” International Journal of Hydrogen Energy, vol. 39, no. 30, pp. 17460-17465, 2014. DOI: https://doi.org/10.1016/j.ijhydene.2014.01.143
U. Aarthi, P. Arunkumar, M. Sribalaji, A. K. Keshrib, and K. Suresh Babu, “Strontium mediated modification of structure and ionic conductivity in samarium doped ceria/sodium carbonate nanocomposites as electrolytes for LTSOFC,” RSC Advances, vol. 6, p. 84860, 2016. DOI: https://doi.org/10.1039/C6RA17926F
J. Di, M. M. Chen, C. Y. Wang, J. M. Zheng, and B. Zhu, “Low temperature solid oxide fuel cells with SDC-carbonate electrolytes,” Advanced Materials Research, vol. 105-106, pp. 687-690, 2010. DOI: https://doi.org/10.4028/www.scientific.net/AMR.105-106.687
J. Huang, Z. Mao, L. Yang, and R. Peng, “SDC-carbonate composite electrolytes for low-temperature SOFCs,” Electro-chemical and Solid-State Letters, vol. 8, no. 9, pp. A437-A440, 2005. DOI: https://doi.org/10.1149/1.1960139
Z. Tayyab, S. Rauf, C. Xia, B. Wang, M. A. K. Y. Shah, N. Mushtaq, S. H. Liang, C. Yang, P. D. Lund, and M. I. Asghar, Advanced LT-SOFC Based on reconstruction of the energy band structure of the LiNi0.8Co0.15Al0.05O2–Sm0.2Ce0.8O2-δ hetero-structure for fast ionic transport, ACS Applied Energy Materials, vol. 4, no. 9, pp. 8922-8932, 2021. DOI: https://doi.org/10.1021/acsaem.1c01186
S. Akkurt, C. Sindiraç, T. Ö. Egesoy, and E. Erğen, “A review on new cobalt-free cathode materials for reversible solid oxide fuel cells,” Journal of Metals, Materials and Minerals, vol. 33, no. 3, pp. 1654, 2023. DOI: https://doi.org/10.55713/jmmm.v33i3.1654
S. P. Jiang, Y. J. Leng, S. H. Chan, and K. A. Khor, “Development of (La, Sr)MnO3-based cathodes for intermediate temperature solid oxide fuel cells,” Electrochemical and Solid-State Letters, vol. 6, no. 4, p. A67, 2003. DOI: https://doi.org/10.1149/1.1558351
G. Stochniol, E. Syskakis, and A. Naoumidis, “Chemical compatibility between strontium‐doped lanthanum manganite and yttria‐stabilized zirconia,” Journal of the American Ceramic Society, vol. 78, no. 4, pp. 929-932, 1995. DOI: https://doi.org/10.1111/j.1151-2916.1995.tb08416.x
K. Kleveland, M. A. Einarsrud, C. R. Schmidt, S. Shamsili, S. Faaland and Wiik, T. Grande, “Reactions between strontium‐substituted lanthanum manganite and yttria‐stabilized zirconia: II, diffusion couples,” Journal of the American Ceramic Society, vol. 82, no. 3, pp. 729-734, 1999. DOI: https://doi.org/10.1111/j.1151-2916.1999.tb01824.x
Q. Yuan, X. Li, S. Han, S. Wang, M. Wang, R. Chen, S. Kudashev, T. Wei, and D. Chen, “Performance analysis and optimization of SOFC/GT hybrid systems: A review,” Energy, vol. 17, no. 5, p. 1265, 2024. DOI: https://doi.org/10.3390/en17051265
S. Horr, H. Mohcene, H. Bouguettaia, and H. B. Moussa, “Performance analysis of AS-SOFC fuel cell combining single and sinusoidal flow field: numerical study,” Environmental Sustainability, vol. 6, p. 18, 2021. DOI: https://doi.org/10.1051/rees/2021018
E. Wachsman, T. Ishihara, and J. Kilner, “Low-temperature solid-oxide fuel cells,” MRS Bulletin, vol. 39, pp. 773-779, 2014. DOI: https://doi.org/10.1557/mrs.2014.192
A. K.Azad, J. H. Kim, and J. T. Irvine, “Structure–property relationship in layered perovskite cathode LnBa0.5Sr0. 5Co2O5+δ (Ln= Pr, Nd) for solid oxide fuel cells,” Journal of Power Sources, vol. 196, no. 17, pp. 7333-7337, 2011. DOI: https://doi.org/10.1016/j.jpowsour.2011.02.063
J. Fleig, “Solid oxide fuel cell cathodes: Polarization mechanisms and modeling of the electrochemical performance,” Annual Review of Materials Research, vol. 33, no. 1, pp. 361-382, 2003. DOI: https://doi.org/10.1146/annurev.matsci.33.022802.093258
E. Ivers-Tiffée, A. Weber, and D. Herbstritt, “Materials and technologies for SOFC-components,” Journal of the European Ceramic Society, vol. 21, no. 10-11, pp. 1805-1811, 2001. DOI: https://doi.org/10.1016/S0955-2219(01)00120-0
M. Liu, and J. Winnick, “Fundamental issues in modeling of mixed ionic-electronic conductors (MIECs),” Solid State Ionics, vol. 118, no. 1-2, pp. 11-21, 1999. DOI: https://doi.org/10.1016/S0167-2738(98)00451-2
A. J. Jacobson, “Materials for solid oxide fuel cells,” Journal of Materials Chemistry, vol. 22, no. 3, pp. 660-674, 2009. DOI: https://doi.org/10.1021/cm902640j
C. Xia, and M. Liu, “Novel cathodes for low‐temperature solid oxide fuel cells,” Advanced Materials, vol. 14, no. 7, pp. 521-523, 2002. DOI: https://doi.org/10.1002/1521-4095(20020404)14:7<521::AID-ADMA521>3.0.CO;2-C
W. Zhang, and Y.H. Hu, “Recent progress in design and fabrication of SOFC cathodes for efficient catalytic oxygen reduction,” Catalysis Today, vol. 409, pp. 71-86, 2023. DOI: https://doi.org/10.1016/j.cattod.2022.05.008
L. S. Wang, and S. A. Barnett, “Ag-perovskite cermets for thin film solid oxide fuel cell air-electrode applications,” Solid State Ionics, vol. 76, no. 1-2, pp. 103-113, 1995. DOI: https://doi.org/10.1016/0167-2738(94)00213-C
H. G. Desta, Y. Yang, B. S. Teketel, Q. Yang, K. Song, S Zhu, D Tian, Y. Chen, T. Luo, and B. Lin, “Enhanced performance of La0. 8Sr0.2FeO3-δ-Gd0. 2Ce0.8O2-δ cathode for solid oxide fuel cells by surface modification with BaCO3 nanoparticles,” Micromachines, vol. 13, no. 6, p. 884, 2022. DOI: https://doi.org/10.3390/mi13060884
N. Li, L. Sun, Q. Li, T. Xia, L. Huo, and H. Zhao, “Novel and high-performance (La, Sr)MnO3 based composite cathodes for intermediate-temperature solid oxide fuel cells,” Journal of the European Ceramic Society, vol. 43, no. 12, pp. 5279-5287, 2023. DOI: https://doi.org/10.1016/j.jeurceramsoc.2023.04.036
H. Zhao, X. Li, F. Ju, and U. Pal, “Effects of particle size of 8 mol% Y2O3 stabilized ZrO2 (YSZ) and additive Ta2O5 on the phase composition and the microstructure of sintered YSZ electrolyte,” Journal of Materials Processing Technology, vol. 200, no. 1-3, pp. 199-204, 2008. DOI: https://doi.org/10.1016/j.jmatprotec.2007.08.051
G. Abbas, M. A. Ahmad, R. Raza, M. H. Aziz, M. A. Khan, F. Hussain, and T. A. Sherazi, “Fabrication of high performance low temperature solid oxide fuel cell based on La0.10Sr0.90Co0.20 Zn0.80O5-δ cathode,” Materials Letters, vol. 238, pp. 179-182, 2019. DOI: https://doi.org/10.1016/j.matlet.2018.11.174
F. Wang, D. Chen, and Z. Shao, “Sm0.5Sr0.5CoO3−δ-infiltrated cathodes for solid oxide fuel cells with improved oxygen reduction activity and stability,” Journal of Power Sources, vol. 216, pp. 208-215, 2012. DOI: https://doi.org/10.1016/j.jpowsour.2012.05.068
I. Díaz-Aburto, F. Gracia, and M. Colet-Lagrille, “Mo-doped CeO2 synthesized by the combustion method for carbon-air solid oxide fuel cell (CA-SOFC) applications,” Fuel Cells, vol. 19, no. 2, pp. 147-159, 2019 DOI: https://doi.org/10.1002/fuce.201800160
S. S. Hashim, F. Liang, W. Zhou, and J. Sunarso, “Cobalt-free perovskite cathodes for solid oxide fuel cells,” ChemElectro Chem, vol. 6, no. 14, pp. 3549-3569, 2019. DOI: https://doi.org/10.1002/celc.201900391
Z. Zhu, C. Zhou, W. Zhou, and N. Yang, “Textured Sr2Sc0.1 Nb0.1Co1.5Fe0.3O6−2δ thin film cathodes for IT-SOFCs,” Materials, vol. 12, no. 5, p. 777, 2019. DOI: https://doi.org/10.3390/ma12050777
G. Abbas, R. Raza, M. Ashfaq, M. A. Chaudhry, A. Khan, I. Ahmad, and B. Zhu, “Electrochemical study of nanostructured electrode for low-temperature solid oxide fuel cell (LTSOFC),” International Journal of Energy Research, vol. 38, no. 4, pp. 518-523, 2013. DOI: https://doi.org/10.1002/er.3090
X. Sun, S. Li, J. Sun, X. Liu, and B. Zhu, “Electrochemical performances of BSCF cathode materials for ceria-composite electrolyte low temperature solid oxide fuel cells,” International Journal of Electrochemical Science, vol. 2, pp. 462-468, 2007. DOI: https://doi.org/10.1016/S1452-3981(23)17086-6
X. L. Yu, and M. F. Shi, “SFA-SDC composite cathodes fabricated with glycine-nitrate process for intermediate-temperature solid oxide fuel cells,” Advanced Materials Research, vol. 1070-1072, pp. 488-491, 2024. DOI: https://doi.org/10.4028/www.scientific.net/AMR.1070-1072.488
J. Sun, C. Wang, S. Li, and S. Ji, “Cathode materials LaNi1-xCuxO3 low temperature solid oxide fuel cells,” Journal of the Korean Ceramic Society, vol. 45, no. 12, pp. 755-759, 2008. DOI: https://doi.org/10.4191/KCERS.2008.45.1.755
G. Abbas, R. Raza, M. A. Ahmad, M. A. Khan, M. J. Hussain, M. Ahmad, H. Aziz, I. Ahmad, R. Batool, F. Altaf, and B. Zhu, Electrochemical investigation of mixed metal oxide nanocomposite electrode for low temperature solid oxide fuel cell," International Journal of Modern Physics, vol. 31, no. 27, p. 1750193, 2017. DOI: https://doi.org/10.1142/S0217979217501934
K. H. Ng, H. A. Rahman, and M. R. Somalu, “Review: Enhancement of composite anode materials for low-temperature solid oxide fuels,” International Journal of Hydrogen Energy, vol. 44, no. 58, pp. 30692-30704, 2018. DOI: https://doi.org/10.1016/j.ijhydene.2018.11.137
S. Cordiner, M. Feola, V. Mulone, and F. Romanelli, “Analysis of a SOFC energy generation system fuelled with biomass reformate,” Applied Thermal Engineering, vol. 27, no. 4, pp. 738-747, 2007. DOI: https://doi.org/10.1016/j.applthermaleng.2006.10.015
T. Kivisaari, P. Björnbom, C. Sylwan, B. Jacquinot, D. Jansen and A. de Groot, “The feasibility of a coal gasifier combined with a high-temperature fuel cell,” Chemical Engineering Journal, vol. 100, no. 1-3, pp. 167-180, 2004. DOI: https://doi.org/10.1016/j.cej.2003.12.005
K. D. Panopoulos, L. E. Fryda, J. Karl, S. Poulou, and E. Kakaras, “High temperature solid oxide fuel cell integrated with novel allothermal biomass gasification: Part I: Modelling and feasibility study,” Journal of Power Sources, vol. 159, no. 1, pp. 570-585, 2006. DOI: https://doi.org/10.1016/j.jpowsour.2005.12.024
T. Zhu, H. E. Troiani, L. V. Mogni, M. Han, and S. A. Barnett, “Ni-substituted Sr(Ti,Fe)O3 SOFC anodes: Achieving high performance via metal alloy nanoparticle exsolution,” Joule, vol. 2, no.3, pp. 478-496, 2018. DOI: https://doi.org/10.1016/j.joule.2018.02.006
A. Atkinson, S. Barnett, R. J. Gorte, J. T. Irvine, A. J. McEvoy, M. Mogensen, S. C. Singhal, and J. Vohs, “Advanced anodes for high-temperature fuel cells,” Nature Materials, vol. 3, no. 1, pp. 17-27, 2004. DOI: https://doi.org/10.1038/nmat1040
J. W. Fergus, “Oxide anode materials for solid oxide fuel cells,” Solid State Ionics, vol. 177, no. 17-18, pp.1529-1541, 2006. DOI: https://doi.org/10.1016/j.ssi.2006.07.012
J. N. Kuhn, N. Lakshminarayanan, and U. S. Ozkan, “Effect of hydrogen sulfide on the catalytic activity of Ni-YSZ cermets,” Journal of Molecular Catalysis A: Chemical, vol. 282, no. 1-2, pp. 9-21, 2008. DOI: https://doi.org/10.1016/j.molcata.2007.11.032
Z. Cheng, and M. Liu, “Characterization of sulfur poisoning of Ni–YSZ anodes for solid oxide fuel cells using in situ Raman microspectroscopy,” Solid State Ionics, vol. 178, no. 13-14, pp. 925-935, 2007. DOI: https://doi.org/10.1016/j.ssi.2007.04.004
Y. Choi, C. Compson, M. C Lin, and M. Liu, “Ab initio analysis of sulfur tolerance of Ni, Cu, and Ni–Cu alloys for solid oxide fuel cells,” Journal of Alloys and Compounds, vol. 427, no. 1-2, pp. 25-29, 2007. DOI: https://doi.org/10.1016/j.jallcom.2006.03.009
D. J. Brett, A. Atkinson, N. P. Brandon, and S.J. Skinner, “Intermediate temperature solid oxide fuel cells,” Chemical Society Reviews, vol. 37, no. 8, pp. 1568-1578, 2008. DOI: https://doi.org/10.1039/b612060c
A. M. Abdalla, S. Hossain, A. T. Azad, P. M. Petra, F. Begum, S. G. Eriksson, and A. K. Azad, “Nanomaterials for solid oxide fuel cells: A review,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 353-68, 2018. DOI: https://doi.org/10.1016/j.rser.2017.09.046
A. L. Sauvet, and J. Fouletier, “Catalytic properties of new anode materials for solid oxide fuel cells operated under methane at intermediary temperature,” Journal of Power Sources, vol. 101, no. 2, pp. 259-266, 2001. DOI: https://doi.org/10.1016/S0378-7753(01)00763-7
S. Lee, J. Bae, and S.P. Katikaneni, “La0.8Sr0.2Cr0.95Ru0.05O3−x and Sm0.8Ba0.2Cr0. 95Ru0.05O3−x as partial oxidation catalysts for diesel,” International Journal of Hydrogen Energy, vol. 39, no. 10, pp. 4938-4946, 2014. DOI: https://doi.org/10.1016/j.ijhydene.2014.01.106
Z. Cheng, S. Zha, L. Aguilar, D. Wang, J. Winnick, and M. Liu, “A solid oxide fuel cell running on H2S∕CH4 fuel mixtures”, Electrochemical and Solid-State Letters, vol. 9, no. 1, p. A31, 2005. DOI: https://doi.org/10.1149/1.2137467
Q. X. Fu, F. Tietz, and D. Stöver, “La0.4Sr0.6Ti1−xMnxO3−δ perovskites as anode materials for solid oxide fuel cells,” Journal of The Electrochemical Society, vol. 153, no. 4, p. D74, 2006. DOI: https://doi.org/10.1149/1.2170585
M. Gong, X. Liu, J. Trembly, and C. Johnson, “Sulfur-tolerant anode materials for solid oxide fuel cell application,” Journal of Power Sources, vol. 168, no. 2, pp. 289-298, 2007. DOI: https://doi.org/10.1016/j.jpowsour.2007.03.026
S. Tao, and J. T. Irvine, “A redox-stable efficient anode for solid-oxide fuel cells,” Nature Materials, vol. 2, no. 5, pp. 320-323, 2003. DOI: https://doi.org/10.1038/nmat871
H. Kim, C. Lu, W. L. Worrell, J. M. Vohs, and R.J. Gorte, “Cu-Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells,” Journal of The Electrochemical Society, vol. 149, no. 3, p. A247, 2002. DOI: https://doi.org/10.1149/1.1445170
R. J. Gorte, S. Park, J. M. Vohs, and C. Wang, “Anodes for direct oxidation of dry hydrocarbons in a solid‐oxide fuel cell,” Advanced Materials, vol. 12, no. 19, pp. 1465-1469, 2000. DOI: https://doi.org/10.1002/1521-4095(200010)12:19<1465::AID-ADMA1465>3.0.CO;2-9
N. Wu, W. Wang, Y. Zhong, G. Yang, J. Qu, and Z. Shao, “Nickel‐iron alloy nanoparticle‐decorated K2NiF4‐type oxide as an efficient and sulfur‐tolerant anode for solid oxide fuel cells,” ChemElectroChem, vol. 4, no. 9, pp. 2378-2384. 2017. DOI: https://doi.org/10.1002/celc.201700211
W. Z. Zhu, and S. C. Deevi, “A review on the status of anode materials for solid oxide fuel cells,” Materials Science and Engineering A, vol. 362, no. 1-2, pp. 228-239, 2003. DOI: https://doi.org/10.1016/S0921-5093(03)00620-8
C. Xia, and M. Liu, “Microstructures, conductivities, and electro-chemical properties of Ce0.9Gd0.1O2 and GDC–Ni anodes for low-temperature SOFCs,” Solid State Ionics, vol. 152, pp. 423-430, 2002. DOI: https://doi.org/10.1016/S0167-2738(02)00381-8
M. Li, B. Hua, J. L. Luo, S. P. Jiang, J. Pu, B. Chi, and J. Li, Enhancing sulfur tolerance of Ni-based cermet anodes of solid oxide fuel cells by ytterbium-doped barium cerate infiltration,” ACS Applied Materials & Interfaces, vol. 8, no.16, pp.10293-10301, 2016. DOI: https://doi.org/10.1021/acsami.6b00925
F. Wang, W. Wang, J. Qu, Y. Zhong, M. O. Tade, and Z. Shao, “Enhanced sulfur tolerance of nickel-based anodes for oxygen-ion conducting solid oxide fuel cells by incorporating a secondary water storing phase,” Journal of Environmental Sciences, vol. 48, no. 20, pp. 12427-12434, 2014. DOI: https://doi.org/10.1021/es503603w
S. Tao, and J. T. Irvine, “Optimization of mixed conducting properties of Y2O3–ZrO2–TiO2 and Sc2O3–Y2O3–ZrO2–TiO2 solid solutions as potential SOFC anode materials,” Journal of Solid State Chemistry, vol. 165, no. 1, pp.12-18, 2002. DOI: https://doi.org/10.1006/jssc.2001.9477
P. Holtappels, M. Verbraeken, U. Vogt, D. H. Blank, and B. A. Boukamp, “Preparation and electrochemical characterisation of supporting SOFC–Ni–YZT anodes,” Solid State Ionics, vol. 177, no. 19-25, pp. 2029-2032, 2006. DOI: https://doi.org/10.1016/j.ssi.2006.06.018
B. J. M. Sarruf, J. -E. Hong, R. S.-Wilckens, and P. E. V. de Miranda, “Ceria-Co-Cu-based SOFC anode for direct utilisation of methane or ethanol as fuels,” International Journal of Hydrogen Energy, vol. 45, no. 8, pp. 5297-5308, 2020. DOI: https://doi.org/10.1016/j.ijhydene.2019.04.075
N. Ni, S. J. Cooper, R. Williams, N. Kemen, D. W. McComb, and S. J. Skinner, “Degradation of (La0.6Sr0.4)0.95(Co0.2Fe0.8)O3−δ solid oxide fuel cell cathodes at the nanometer scale and below,” ACS Applied Materials & Interfaces, vol. 8, no. 27, pp.17360-17370, 2016. DOI: https://doi.org/10.1021/acsami.6b05290
M. L. Faro, S. C. Zignani, and A. S. Aricò, “Lanthanum ferrites-based exsolved perovskites as fuel-flexible anode for solid oxide fuel cells,” Materials, vol. 13, no. 14, pp. 3231, 2020. DOI: https://doi.org/10.3390/ma13143231
V. Vorontsov, J. L. Luo, A. R. Sanger, and K. T. Chuang, “Synthesis and characterization of new ternary transition metal sulfide anodes for H2S-powered solid oxide fuel cell,” Journal of Power Sources, vol. 183, no. 1, pp. 76-83, 2008. DOI: https://doi.org/10.1016/j.jpowsour.2008.04.055
Y. Liu, Z. Shao, T. Mori, and S. P. Jiang, “Development of nickel based cermet anode materials in solid oxide fuel cells – Now and future,” Materials Reports: Energy, vol. 1, no.1, p. 100003, 2021. DOI: https://doi.org/10.1016/j.matre.2020.11.002
W. Wang, J. Qu, B. Zhao, G. Yang, and Z. Shao, “Core–shell structured Li0.33La0.56TiO3 perovskite as a highly efficient and sulfur-tolerant anode for solid-oxide fuel cells,” Journal of Materials Chemistry A, vol. 3, no. 16, pp. 8545-8551, 2015. DOI: https://doi.org/10.1039/C5TA01213A
S. C. Singhal, “Advances in solid oxide fuel cell technology,” Solid State Ionics, vol. 135, no. 1-4, pp. 305-313, 2000. DOI: https://doi.org/10.1016/S0167-2738(00)00452-5
Y. H. Huang, R. I. Dass, Z. L. Xing, and J. B. Goodenough, “Double perovskites as anode materials for solid-oxide fuel cells,” Science, vol. 312, no. 5771, pp. 254-257, 2006. DOI: https://doi.org/10.1126/science.1125877
Y. F. Sun, J. H. Li, L. Cui, B. Hua, S. H. Cui, J. Li, and J. L. Luo, “A-site-deficiency facilitated in situ growth of bimetallic Ni–Fe nano-alloys: A novel coking-tolerant fuel cell anode catalyst,” Nanoscale, vol. 7, no. 25, pp.11173-11181, 2015. DOI: https://doi.org/10.1039/C5NR02518D
T. Ishihara, J. Yan, M. Shinagawa, and H. Matsumoto, “Ni–Fe bimetallic anode as an active anode for intermediate temperature SOFC using LaGaO3 based electrolyte film,” Electrochimica Acta, vol. 52, no. 4, pp. 1645-1650, 2006. DOI: https://doi.org/10.1016/j.electacta.2006.03.103
W. Wang, J. Qu, P. S. Juliao, and Z. Shao, “Recent advances in the development of anode materials for solid oxide fuel cells utilizing liquid oxygenated hydrocarbon fuels: a mini review,” Journal of Energy Resources Technology, vol. 7, no. 1, pp. 33-44, 2017. DOI: https://doi.org/10.1002/ente.201700738
C. Ding, H. Lin, K. Sato, and T. Hashida, “Synthesis of NiO–Ce0.9Gd0.1O1.95 nanocomposite powders for low-temperature solid oxide fuel cell anodes by co-precipitation,” Scripta Materialia, vol. 60, no. 4, pp. 254-256, 2009. DOI: https://doi.org/10.1016/j.scriptamat.2008.10.020
C. Fu, S. H. Chan, Q. Liu, X. Ge, and G. Pasciak, “Fabrication and evaluation of Ni-GDC composite anode prepared by aqueous-based tape casting method for low-temperature solid oxide fuel cell,” International Journal of Hydrogen Energy, vol. 35, no. 1, pp. 301-307, 2010. DOI: https://doi.org/10.1016/j.ijhydene.2009.09.101
G. Abbas, M. A. Chaudhry, R. Raza, M. Singh, Q. Liu, H. Qin, and B. Zhu, “Study of CuNiZnGdCe-nanocomposite anode for low temperature SOFC,” NanoScience Letters, vol. 4, no. 4, pp. 389-393, 2012. DOI: https://doi.org/10.1166/nnl.2012.1306
J. Ding, J. Liu, and W. Guo, “Fabrication and study on Ni1−xFexO- YSZ anodes for intermediate temperature anode-supported solid oxide fuel cells,” Journal of Alloys and Compounds, vol. 480, no. 2, pp. 286-290, 2009. DOI: https://doi.org/10.1016/j.jallcom.2009.02.111
G. Xiao, S. Wang, Y. Lin, Z. Yang, M. Han, and F. Chen, “Ni-doped Sr2Fe1.5Mo0.5O6-δ as anode materials for solid oxide fuel cells,” Journal of The Electrochemical Society, vol. 161, no. 3, pp. F305-F310, 2014. DOI: https://doi.org/10.1149/2.061403jes
Y. Liu, J. Luo, C. Li, B. Liu, D. Yan, J. Li and L. Jia, “BaCe0.8Fe0.1 Ni0.1O3−δ-impregnated Ni–GDC by phase-inversion as an anode of solid oxide fuel cells with on-cell dry methane reforming,” Journal of Advanced Ceramics, vol. 13, no. 6, pp. 834-841, 2024. DOI: https://doi.org/10.26599/JAC.2024.9220902
Y. Jing , H. Qin, Q. Liu, M. Singh, and B. Zhu, “Synthesis and electrochemical performances of LiNiCuZn oxides as anode and cathode catalyst for low temperature solid oxide fuel cell,” Journal of Nanoscience and Nanotechnology, vol. 12, pp. 5102-5105, 2012. DOI: https://doi.org/10.1166/jnn.2012.4940
J. Yang, H. Li, R. Zhou, C. Du, and S. Wang, “Preparation and properties of anode material LSCM for SOFC,” Journal of Alloys and Compounds, vol. 986, p. 174145, 2024. DOI: https://doi.org/10.1016/j.jallcom.2024.174145
A. Sinha, D. N. Miller, and J. T. S. Irvine, “Development of novel anode material for intermediate temperature SOFC (IT-SOFC),” Journal of Materials Chemistry A, vol. 4, pp. 1117, 2016. DOI: https://doi.org/10.1039/C6TA03404G
Z. Li, M. Peng, X. Zhang, L. Zhang, J. Li, and Y. Sun, “Preparation of SOFC anodes at lower temperature with boosted electro-chemical performance” ACS Applied Energy Materials Journal, vol. 6, no. 6, pp. 3616-3626, 2023. DOI: https://doi.org/10.1021/acsaem.3c00278
R. Price, U. Weissen, J. G. Grolig, M. Cassidy, A. Mai, and J. T. S. Irvine, “Durability of La0.20Sr0.25Ca0.45TiO3-based SOFC anodes: Identifying sources of degradation in Ni and Pt/ceria co-impregnated fuel electrode microstructures,” Journal of Materials Chemistry A, vol. 9, pp. 10404-10418, 2021. DOI: https://doi.org/10.1039/D1TA00416F
A. B. Stambouli, and E. Traversa, “Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy,” Renewable and Sustainable Energy Reviews, vol. 6, no. 5, pp. 433-55, 2002. DOI: https://doi.org/10.1016/S1364-0321(02)00014-X
T. Nakamura, G. Petzow, and L. J. Gauckler, “Stability of the perovskite phase LaBO3 (B= V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere I. Experimental results,” Materials Research Bulletin, vol. 14, no. 5, pp. 649-659, 1979. DOI: https://doi.org/10.1016/0025-5408(79)90048-5
B. Wang, K. Li, J. Liu, T. Yang, and N. Zhang, “Fabricating a MnCo coating to improve oxidation resistance and electrical conductivity of Crofer22H alloy as SOFC interconnect,” International Journal of Hydrogen Energy, vol. 2, no. 50, pp. 1503-1514, 2024. DOI: https://doi.org/10.1016/j.ijhydene.2023.11.014
J. Zhang, S. Ricote, P. V. Hendriksen, and Y. Chen, “Advanced materials for thin‐film solid oxide fuel cells: Recent progress and challenges in boosting the device performance at low temperatures,” Advanced Functional Materials, vol. 32, no. 22, p. 2111205, 2022. DOI: https://doi.org/10.1002/adfm.202111205
M. Xu, Y. R. Girish, K. P. Rakesh, P. Wu, H. M. Manukumar, S. M. Byrappa, and K. Byrappa, “Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications,” Materials Today Communications, vol. 1, no. 28, p. 102533, 2021. DOI: https://doi.org/10.1016/j.mtcomm.2021.102533
J. Wu, and X. Liu, “Recent development of SOFC metallic interconnect,” Journal of Materials Science & Technology, vol. 26, no. 4, pp. 293-305, 2010. DOI: https://doi.org/10.1016/S1005-0302(10)60049-7
Z. Yang, K. S. Weil, D. M. Paxton, and J. W. Stevenson, “Selection and evaluation of heat-resistant alloys for SOFC interconnect applications,” Journal of The Electrochemical Society, vol. 150, no. 9, p. A1188, 2003. DOI: https://doi.org/10.1149/1.1595659
A. J. Majewski, and A. Dhir, “Application of silver in microtubular solid oxide fuel cells,” Materials for Renewable and Sustainable Energy, vol. 7, pp. 1-3, 2018. DOI: https://doi.org/10.1007/s40243-018-0123-y
S. Chevalier, L. Combemale, I. Popa, S. Chandra-Ambhorn, W. Chandra-Ambhorn, P. Promdirek, and P. Wongpromrat, “Development of SOFC interconnect stainless steels,” Solid State Phenomena, vol. 300, pp. 135-156, 2020. DOI: https://doi.org/10.4028/www.scientific.net/SSP.300.135
C. C. Chao, C. M. Hsu, Y. Cui, and F. B. Prinz, “Improved solid oxide fuel cell performance with nanostructured electrolytes,” ACS Nano, vol. 5, no. 7, pp. 5692-5696, 2011. DOI: https://doi.org/10.1021/nn201354p
Y. Lu, B. Zhu, J. Wang, Y. Zhang, and J. Li, “Hybrid power generation system of solar energy and fuel cells,” International Journal of Energy Research, vol. 40, no. 6, pp. 717-725, 2016. DOI: https://doi.org/10.1002/er.3474
K. Kendall, “Hydrogen and fuel cells in city transport,” International Journal of Energy Research, vol. 40, no. 1, pp.30-35, 2015. DOI: https://doi.org/10.1002/er.3290
M. Thoennes, A. Busse, and L. Eckstein, “Forecast of performance parameters of automotive fuel cell systems–delphi study results,” Fuel Cells, vol. 14, no. 6, pp. 781-791, 2014. DOI: https://doi.org/10.1002/fuce.201400035
Y. Zhang, J. Liu, X. Huang, Z. Lu, and W. Su, “Low temperature solid oxide fuel cell with Ba0.5Sr0.5Co0.8Fe0.2O3 cathode prepared by screen printing,” Solid State Ionics, vol. 179, no. 7-8, pp. 250-255, 2008. DOI: https://doi.org/10.1016/j.ssi.2008.02.008
M. R. Somalu, A. Muchtar, W. R. W. Daud, and N. P. Brandon, “Screen-printing inks for the fabrication of solid oxide fuel cell films: A review,” Renewable and Sustainable Energy Reviews, vol. 75, pp. 426-439, 2017. DOI: https://doi.org/10.1016/j.rser.2016.11.008
N. W. Norman, W. N. Yusoff, A. A. Samat, M. R. Somalu, A. Muchtar, and N.A. Baharuddin, “Fabrication process of cathode materials for solid oxide fuel cells,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 50, no. 2, pp.153-160, 2018.
S. Dittrich, E. Reitz, K. G. Schell, E. C. Bucharsky, and M. J. Hoffmann, “Development and characterization of inks for screen printing of glass solders for SOFCs,” International Journal of Applied Ceramic Technology, vol. 17, no. 3, pp. 1304-1313, 2020. DOI: https://doi.org/10.1111/ijac.13461
S. Dharani Priya, A. Immanuel Selvakumar, and A. Samson Nesaraj, “Overview on -ceramic and nanostructured materials for solid oxide fuel cells (SOFCs) working at different temperatures,” Journal of Electrochemical Science and Technology, vol. 11, no. 2, pp. 99-116, 2020. DOI: https://doi.org/10.33961/jecst.2019.00612
L. S. Mahmud, A. Muchtar, and M. R. Somalu, “Challenges in fabricating planar solid oxide fuel cells: A review,” Renewable and Sustainable Energy Reviews, vol. 72, pp. 105-16, 2017. DOI: https://doi.org/10.1016/j.rser.2017.01.019
S. Lee, C. L. Chu, M. J. Tsai, and J. Lee, “High temperature oxidation behaviour of interconnect coated with LSCF and LSM for solid oxide fuel cell by screen printing,” Applied Surface Science, vol. 256, no. 6, pp. 1817-1824, 2010. DOI: https://doi.org/10.1016/j.apsusc.2009.10.013
M. R. Somalu, and N. P. Brandon, “Rheological studies of nickel/ scandia‐stabilized‐zirconia screen printing inks for solid oxide fuel cell anode fabrication,” Journal of the American Ceramic Society, vol. 95, no. 4, pp. 1220-1228, 2012. DOI: https://doi.org/10.1111/j.1551-2916.2011.05014.x
R. Hansch, M. R. R. Chowdhury, and N. H. Menzler, “Screen printing of sol–gel-derived electrolytes for solid oxide fuel cell (SOFC) application,” Ceramics International, vol. 35, no. 2, pp. 803-811, 2009. DOI: https://doi.org/10.1016/j.ceramint.2008.02.020
N. Hart, N. Brandon, and J. Shemilt, “Environmental evaluation of thick film ceramic fabrication techniques for solid oxide fuel cells,” Journal of Manufacturing and Materials Processing, vol. 15, no. 1, pp. 47-64, 2000. DOI: https://doi.org/10.1080/10426910008912972
M. R. Somalu, A. Muchtar, and N. P. Brandon, “Understanding the Rheology of screen-printing inks for the fabrication of SOFC thick films,” ECS Transactions., vol. 68, no. 1, pp. 1323, 2015. DOI: https://doi.org/10.1149/06801.1323ecst
D. Rotureau, J. P. Viricelle, C. Pijolat, N. Caillol, and M. Pijolat, “Development of a planar SOFC device using screen-printing technology,” Journal of the European Ceramic Society, vol. 25, no. 12, pp. 2633-2636, 2005. DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.03.115
L. Ren, X. Luo, and H. Zhou, The tape casting process for manufacturing low-temperature co-fired ceramic green sheets: A review, Journal of the American Ceramic Society, vol. 101, no. 9, pp. 3874-3889, 2018. DOI: https://doi.org/10.1111/jace.15694
R. K. Nishihora, P. L. Rachadel, M. G. Quadri, and D. Hotza, “Manufacturing porous ceramic materials by tape casting-A review,” Journal of the European Ceramic Society, vol. 38, no. 4, pp. 988-1001, 2018. DOI: https://doi.org/10.1016/j.jeurceramsoc.2017.11.047
A. Samson Nesaraj, I. Arul Raj, and R. Pattabiraman, “Preparation of zirconia thin films by tape casting technique as electrolyte material for solid oxide fuel cells,” Indian Journal of Engineering and Materials Sciences, vol. 9, no. 1, pp. 58-64, 2002.
D. Hotza, and P. Greil, “Aqueous tape casting of ceramic powders,” Journal of Materials Science, vol. 202, no. 1-2, pp. 206-217, 1995. DOI: https://doi.org/10.1016/0921-5093(95)09785-6
B. Bitterlich, C. Lutz, and A. Roosen, “Rheological characterization of water-based slurries for the tape casting process,” Ceramics International, vol. 28, no. 6, pp. 675-683, 2002. DOI: https://doi.org/10.1016/S0272-8842(02)00027-5
D. Hotza, R. K. Nishihora, R. A. F. Machado, P.-M. Geffroy, T. Chartier, and S. Bernard, Tape casting of preceramic polymers toward advanced ceramics: A review, International Journal of Ceramic Engineering & Science, vol. 1, no. 1, pp. 21-41, 2019. DOI: https://doi.org/10.1002/ces2.10009
B. Dai, M. Zhou, K. Liu, B. He, B. Xiang, and L. Kong, “The molding of the ceramic solid electrolyte sheet prepared by tape casting,” Journal of Physics: Conference Series, vol. 2566, p. 012102, 2023. DOI: https://doi.org/10.1088/1742-6596/2566/1/012102
A. L. Snowdon, Z. Jiang, and R. Steinberger‐Wilckens, “Five‐layer reverse tape casting of IT‐SOFC,” International Journal of Applied Ceramic Technology, vol. 19, no. 1, pp. 289-298, 2021. DOI: https://doi.org/10.1111/ijac.13911
Z. Ruhma, K. Yashiro, I. Oikawa, H. Takamura, and T. Kawada, “Metal-supported SOFC fabricated by tape casting and its characterization: A study of the co-sintering process, Journal of Engineering and Technological Sciences, vol. 53, no. 5, pp. 210511, 2021. DOI: https://doi.org/10.5614/j.eng.technol.sci.2021.53.5.11
M. Liu, and Y. Liu, “Multilayer tape casting of large-scale anode-supported thin-film electrolyte solid oxide fuel cells,” International Journal of Hydrogen Energy, vol. 44, no. 31, pp. 16976-16982, 2019. DOI: https://doi.org/10.1016/j.ijhydene.2019.04.161
N. Q. Minh, Y. H. Lee, Q. T. Tran, H. Ren, E. E. Fullerton, E. A. Wu, and Y. S. Meng, “Sputtered thin-film solid oxide fuel cells,” ECS Transactions, vol. 103, no. 1, pp. 67, 2021. DOI: https://doi.org/10.1149/10301.0067ecst
Y. H. Lee, H. Ren, E. A. Wu, E. E. Fullerton, Y. S. Meng, and N. Q. Minh, “All- sputtered, superior power density thin film-solid oxide fuel cells with a novel nanofibrous ceramic cathode,” Nano Letters, vol. 20, no. 5, pp. 2943-2949, 2020. DOI: https://doi.org/10.1021/acs.nanolett.9b02344
A. Solovyev, A. Shipilova, and E. Smolyanskiy, “Solid oxide fuel cells with magnetron sputtered single-layer SDC and multilayer SDC/YSZ/SDC electrolytes,” Membranes, vol. 13, no. 6, pp. 585, 2023. DOI: https://doi.org/10.3390/membranes13060585
W. Yu, Y. Lim, S. Lee, A. Pandiyan, G. Y. Cho, and S. W. Cha, “Low-temperature, high-performance thin-film solid oxide fuel cells with tailored nano-column structures of a sputtered Ni anode,” Journal of Materials Chemistry A, vol. 8, no. 41, pp. 21668-21679, 2020. DOI: https://doi.org/10.1039/D0TA06255C
A. A. Solovyev, A. V. Shipilova, I. V. Ionov, A. N. Kovalchuk, S. V. Rabotkin, and V.O. Oskirko,” Magnetron-sputtered YSZ and CGO electrolytes for SOFC,” Journal of Electronic Materials, vol. 45, pp. 3921-3928, 2016. DOI: https://doi.org/10.1007/s11664-016-4462-0
Y. Zhang, J. Gao, D. Peng, M. Guangyao and X. Liu, “Dip-coating thin yttria-stabilized zirconia films for solid oxide fuel cell applications,” Ceramics International, vol. 30, no. 6, pp.1049-1053, 2004. DOI: https://doi.org/10.1016/j.ceramint.2003.10.026
H. Tikkanen, C. Suciu, I. Wærnhus, and A.C. Hoffmann, “Dip-coating of 8YSZ nanopowder for SOFC applications,” Ceramics International, vol. 37, no. 7, pp. 2869-2877, 2011. DOI: https://doi.org/10.1016/j.ceramint.2011.05.006
L. Lei, Y. Bai, Y. Liu, and J. Liu, “An investigation on dip‐coating technique for fabricating anode‐supported solid oxide fuel cells,” International Journal of Applied Ceramic Technology, vol. 12, no. 2, pp. 351-357, 2013. DOI: https://doi.org/10.1111/ijac.12147
A. Torabi, T. H. Etsell, and P. Sarkar, “Dip coating fabrication process for micro-tubular SOFCs,” Solid State Ionics, vol. 192, no. 1, pp. 372-375, 2011. DOI: https://doi.org/10.1016/j.ssi.2010.09.050
C. Chen, M. Liu, L. Yang, and M. Liu, “Anode-supported micro-tubular SOFCs fabricated by a phase-inversion and dip-coating process,” International Journal of Hydrogen Energy, vol. 36, no. 9, pp. 5604-5610, 2011. DOI: https://doi.org/10.1016/j.ijhydene.2011.02.016
Y. Bai, J. Liu, H. Gao, and C. Jin, “Dip coating technique in fabrication of cone-shaped anode-supported solid oxide fuel cells,” Journal of Alloys and Compounds, vol. 480, no. 2, pp. 554-557, 2009. DOI: https://doi.org/10.1016/j.jallcom.2009.01.089

Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Journal of Metals, Materials and Minerals

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.