The Impact of hot rolling, Zn and Sn on the mechanical and corrosion characteristics of Mg-Zn-Ca alloys
DOI:
https://doi.org/10.55713/jmmm.v34i4.2092Keywords:
Magnesium alloy, Corrosion, Biomaterial, materials science, BiodegradabilityAbstract
In this study, it was aimed to develop a biodegradable metallic plate that is an alternative to bioinert metal plates. The main advantage of using biodegradable materials for implants is that they can be gradually replaced with the patient's own tissue, which reduces the need for additional surgeries to remove the implant after it has served its purpose. Magnesium and its alloys can provide biocompatibility as orthopedic implant materials. Mg-Zn-Ca and Mg-Zn-Ca-Sn alloys were prepared using the gravity die casting method. Zn (1.0 wt% and 2.0 wt%) and Sn (0.0 wt%, 0.5 wt% and 1.0 wt%) ratios were used as variables, and the Ca ratio (0.3 wt%) was kept constant in all alloys. After homogenization heat treatment, alloys were hot rolled. Hot rolling resulted in grain refinement, much higher yield and tensile strength, and hardness at the expense of the lower strain. However, hot rolling had a detrimental impact on the corrosion resistance of the alloys. Among the alloys, ZX20-h alloy showed the highest yield and tensile strength before and after corrosion tests. The lowest corrosion rate was measured in ZXT200 alloy as 5.1 mm∙year‒1 after 10 day of immersion. Although ZX20-h alloy has a higher corrosion rate (13.56 mm∙year‒1) than ZXT200 alloy, it can be improved further to be used as biodegradable bone support plate material.
Downloads
References
V. Tsakiris, C. Tardei, and F. M. Clicinschi, “Biodegradable Mg alloys for orthopedic implants–A review,” Journal of Magnesium and Alloys, vol. 9, no. 6, pp. 1884-1905, 2021. DOI: https://doi.org/10.1016/j.jma.2021.06.024
S. Kamrani, and C. Fleck, “Biodegradable magnesium alloys as temporary orthopaedic implants: a review,” Biometals, vol. 32, pp. 185-193, 2019. DOI: https://doi.org/10.1007/s10534-019-00170-y
C. Lhotka, T. Szekeres, I. Steffan, K. Zhuber, and K. Zweymüller, “Four-year study of cobalt and chromium blood levels in patients managed with two different metal-nonmetal total hip replacements,” Journal of Orthopaedic Research, vol. 21, no. 2, pp. 189-95, 2003. DOI: https://doi.org/10.1016/S0736-0266(02)00152-3
J. J. Jacobs, N. J. Hallab, A. K. Skipor, and R. M. Urban, “Metal degradation products: a cause for concern in metal-metal bearings,” Clinical Orthopaedics and Related Research, vol. 417, pp. 139-147, 2003. DOI: https://doi.org/10.1097/01.blo.0000096810.78689.62
J. A. Bishop, A. A. Palanca, M. J. Bellino, and D. W. Lowenberg, “Assessment of compromised fracture healing,” Journal of the American Academy of Orthopaedic Surgeons, vol. 20, no. 5, pp. 273-282, 2012. DOI: https://doi.org/10.5435/JAAOS-20-05-273
O. Bostman, J. Viljanen, S. Salminen, and H. Pihlajamäki, “Response of articular cartilage and subchondral bone to internal fixation devices made of poly-L-lactide: a histomorphometric and microradiographic study on rabbits,” Biomaterials, vol. 21, pp. 2553-2560, 2000. DOI: https://doi.org/10.1016/S0142-9612(00)00123-X
J. Nagels, M. Stokdijk, and P. M. Rozing, “Stress shielding and bone resorption in shoulder arthroplasty,” Journal of Shoulder and Elbow Surgery, vol. 12, pp. 35-39, 2003. DOI: https://doi.org/10.1067/mse.2003.22
H. S. Han, S. Loffredo, I. Jun, J. Edwards, Y-C. Kim, H-K. Seok, F. Witte, D. Mantovani, and S. Glyn-Jones, “Current status and outlook on the clinical translation of biodegradable metals,” Materials Today, vol. 23, pp. 57-71, 2019. DOI: https://doi.org/10.1016/j.mattod.2018.05.018
D. Zhao, F. Witte, F. Lu, J. Wang, J. Li, and L. Qin, “Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective,” Biomaterials, vol. 112, pp. 287-302, 2017. DOI: https://doi.org/10.1016/j.biomaterials.2016.10.017
D. Persaud-Sharma, and A. Mcgoron, “Biodegradable magnesium alloys: Areview of material development and applications,” Journal of Biomimetics, Biomaterials and Biomedical Engineering, vol. 12, pp. 25-39, 2011.
L. Zheng, H. Nie, W. Liang, H. Wang, and Y. Wang, “Effect of pre-homogenizing treatment on microstructure and mechanical properties of hot-rolled AZ91 magnesium alloys,” Journal of Magnesium and Alloys, vol. 4, no. 2, pp. 115-122, 2016. DOI: https://doi.org/10.1016/j.jma.2016.04.002
X. N. Gu, and Y. F. Zheng, “A review on magnesium alloys as biodegradable materials,” Frontiers of Materials Science, vol. 4, pp. 111-115, 2010. DOI: https://doi.org/10.1007/s11706-010-0024-1
M. M. Avedesian, and H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys. United State of America: ASM international, 1999.
L. Hou, Z. Li, Y. Pan, L. Du, X. Li, Y. Zheng, and I. Ii, “In vitro and in vivo studies on biodegradable magnesium alloy,” Progress in Natural Science: Materials International, vol. 24, no. 5, pp. 466-471, 2014. DOI: https://doi.org/10.1016/j.pnsc.2014.09.002
D. P. Sharma, and A. Mcgoron, “Biodegradable magnesium alloys: a review of material development and applications,” Journal of Biomimetics, Biomaterials and Tissue Engineering, vol. 12, pp. 25-39, 2012. DOI: https://doi.org/10.4028/www.scientific.net/JBBTE.12.25
T. Kraus, S. F. Fischerauer, A. C. Hanzi, P. J. Uggowitzer, J. F. Löffler, and A. M. Weinberg, “Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone,” Acta Biomaterialia, vol. 8, no, 3, pp. 1230-1238, 2012. DOI: https://doi.org/10.1016/j.actbio.2011.11.008
C. Zhao, F. Pan, S. Zhao, H. Pan, K. Song, and A. Tang, “Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg–Sn implant alloys prepared by sub-rapid solidification,” Materials Science and Engineering: C, vol. 54, pp. 245-251, 2015. DOI: https://doi.org/10.1016/j.msec.2015.05.042
W. Zhao, J. Wang, J. Weiyang, B. Qiao, Y. Wang, Y. Li, and D. Jiang, “A novel biodegradable Mg-1Zn-0.5 Sn alloy: Mechanical properties, corrosion behavior, biocompatibility, and antibacterial activity,” Journal of Magnesium and Alloys, vol. 8, no. 2, pp. 374-386, 2020. DOI: https://doi.org/10.1016/j.jma.2020.02.008
W. Jiang, and W. Yu “In vitro degradation behavior, mechanical properties, and cytocompatibility of biodegradable Mg-1Zn-XSn alloys,” Crystals, vol. 12, p. 1219, 2022. DOI: https://doi.org/10.3390/cryst12091219
W. Jiang, J. Wang, W. Zhao, Q. Liu, D. Jiang, and S. Guo, “Effect of Sn addition on the mechanical properties and bio-corrosion behavior of cytocompatible Mg–4Zn based alloys,” Journal of Magnesium and Alloys, vol. 7, np. 1, pp. 15-26, 2019. DOI: https://doi.org/10.1016/j.jma.2019.02.002
N. El-Mahallawy, H. Palkowski, H. G. Breitinger, A. Klingner, M. Shoeib, and A. Diaa, “Microstructure, mechanical properties, cytotoxicity, and bio-corrosion of micro-alloyed Mg–x Sn–0.04 Mn alloys for biodegradable orthopedic applications: Effect of processing techniques,” Journal of Materials Research, vol. 36, pp. 1456-1474, 2021. DOI: https://doi.org/10.1557/s43578-021-00172-y
E. Zhang, and L. Yang, “Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application,” Materials Science and Engineering: A, vol. 497, pp. 111-118, 2008. DOI: https://doi.org/10.1016/j.msea.2008.06.019
S. A. Wahid, Y. G. Jung, S. Ha, and H. K. Lim, “Effect of CaMgSn ternary phase on the aging response of Mg-Sn-Zn-Ca alloys,” Journal of Korea Foundry Society, vol. 8, pp. 75-81, 2018.
P. K. Rout, S. Roy, and D. Rathore, “Recent advances in the development of Mg-Ca-Zn alloys as biodegradable orthopedic implants,” Materials Today: Proceedings, 2023.
H. Li, D. Liu, Y. Zhao, F. Jin, and M. Chen, “The influence of Zn content on the corrosion and wear performance of Mg-Zn-Ca alloy in simulated body fluid,” Journal of Materials Engineering and Performance, vol. 25, pp. 3890-3895, 2016. DOI: https://doi.org/10.1007/s11665-016-2207-0
H. Du, Z. Wei, X. Liu, and E. Zhang, “Effects of Zn on the microstructure, mechanical property and bio-corrosion property of Mg–3Ca alloys for biomedical application,” Materials Chemistry and Physics, vol. 125, pp. 568-575, 2011. DOI: https://doi.org/10.1016/j.matchemphys.2010.10.015
H. R. Bakhsheshi-Rad, M. R. Abdul-Kadir, M. H. Idris, and S. Farahany, “Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg–0.5Ca–xZn alloys,” Corrosion Science, vol. 64, pp. 184-197, 2012. DOI: https://doi.org/10.1016/j.corsci.2012.07.015
X. Gu, Y. Zheng, Y. Cheng, S. Zhong, and T. Xi, “In vitro corrosion and biocompatibility of binary magnesium alloys,” Biomaterials, vol. 30, no. 4, pp. 484-498, 2009. DOI: https://doi.org/10.1016/j.biomaterials.2008.10.021
A. Incesu, “Design and production of biodegradable Mg-Zn-Ca VE Mg-Zn-Ca-Mn magnesium alloys for biomedical applications,” Ph.D. dissertation, Department of Metallurgical and Materials Engineering, Karabuk University, Karabuk, Turkey, 2019.
ASM International Handbook Committee, “ASM Metals Handbook Volume 8 Metallography, Structures and Phase Diagrams,” 8th ed. ASM International, USA: 1990.
L. Lu, A. K. Dahle, J. A. Taylor, and D. H. StJohn, “Theoretical and practical considerations of grain refinement of Mg-Al alloys,” Materials Science Forum, vol. 488-489, pp. 299-302, 2005. DOI: https://doi.org/10.4028/www.scientific.net/MSF.488-489.299
L. Wei, J. Li, Y. Zhang, and H. Lai, “Effects of Zn content on microstructure, mechanical and degradation behaviors of Mg-xZn-0.2 Ca-0.1 Mn alloys,” Materials Chemistry and Physics, vol. 241, p. 122441, 2020. DOI: https://doi.org/10.1016/j.matchemphys.2019.122441
D. Hong, D-T. Chou, B. Lee, B. Collins, Z. Tan, Z. Dong, and P. N. Kumta,“In vitro degradation and cytotoxicity response of Mg–4% Zn–0.5% Zr (ZK40) alloy as a potential biodegradable material,” Acta biomaterialia, vol. 9, no. 10, pp. 8534-8547, 2013. DOI: https://doi.org/10.1016/j.actbio.2013.07.001
X. Zhang, G. Yuan, L. Mao, J. Niu, and W. Ding, “Biocorrosion properties of as-extruded Mg–Nd–Zn–Zr alloy compared with commercial AZ31 and WE43 alloys,” Materials Letters, vol. 66, no. 1, pp. 209-211, 2012. DOI: https://doi.org/10.1016/j.matlet.2011.08.079
F. Witte, N. Hort, C. Vogt, S. Cohen, K. U. Kainer, R. Willumeit, and F. Feyerabend, “Degradable biomaterials based on magnesium corrosion,” Current opinion in solid state and materials science, vol. 12, no. 5-6, pp. 63-72, 2008. DOI: https://doi.org/10.1016/j.cossms.2009.04.001
M. O. Nwankwo, P. A. Nwobasi, P. O. Offor, and N. E. Idenyi “Unification of the quadratic model equations of the inhibition characteristics of acidifield ocimum basilicum on the corrosion behavior of mild steel,” Journal of Minerals and Materials Characterization and Engineering, vol. 1, pp. 367-373, 2013. DOI: https://doi.org/10.4236/jmmce.2013.16057
H. M. Lieth, M. A. Jabbar, R. J. Jassim, and R. Al-Sabur “Optimize the corrosion behavior of AISI 204Cu stainless steel in different environments under previous cold working and welding,” Metallurgical Research & Technology, vol. 120, no. 4, pp. 415-424, 2023 DOI: https://doi.org/10.1051/metal/2023058
H. Gerengi, E. Kaya, and M. Cabrini “Magnesium (99.95%) potential to use as a biodegradable material,” Journal of Advanced Technology Sciences, vol. 6, no. 2, pp. 10-25, 2017.
M. E. Moussa, M. M. M. Salem, M. A. Hamid, M. H. Gomaa, A. Abd-Elwahed, I. M. Ghayad, and A. A. Mohamed, “Mechanical integrity and in vitro degradation behavior of Mg–Zn–Ca biodegradable alloy prepared by different casting technologies,” International Journal of Metalcasting, pp. 1-19, 2023. DOI: https://doi.org/10.1007/s40962-023-01229-w
L. Yang, Y. Feng, Y. He, L. Yang, H. Liu, X. Wang, C. Peng, and R. Wang, “Effect of Sc/Sm microalloying on microstructural and properties of Mg-2Zn-0.3 Ca biodegradable alloy,” Journal of Alloys and Compounds, vol. 907, p. 164533, 2022. DOI: https://doi.org/10.1016/j.jallcom.2022.164533
G. R. Argade, S. K. Panigrahi, and R. S. Mishra “Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium,” Corrosion Science, vol. 58, pp. 145-151, 2012. DOI: https://doi.org/10.1016/j.corsci.2012.01.021
J. H. Chu, L. B. Tong, Z. H. Jiang, D. N. Zou, Q. J. Wang, S. F. Liu, and H. J. Zhang, “A comparison study of Ce/La and Ca microalloying on the bio-corrosion behaviors of extruded Mg-Zn alloys,” Journal of Magnesium and Alloys, vol. 8, no. 4, pp. 1269-1280, 2020. DOI: https://doi.org/10.1016/j.jma.2019.09.011
G. L. Song, and Z. Xu “The surface, microstructure and corrosion of magnesium alloy AZ31 sheet,” Electrochimica Acta, vol. 55, no. 13, pp. 4148-4161, 2010. DOI: https://doi.org/10.1016/j.electacta.2010.02.068
Y. Wang, Y. Zhang, and H. Jiang “Effect of grain size uniformity and crystallographic orientation on the corrosion behavior of Mg-2Zn-1Al bar,” Materials Characterization, vol. 179, p. 111374, 2021. DOI: https://doi.org/10.1016/j.matchar.2021.111374
Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Metals, Materials and Minerals
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.