Studies of structural, microstructural, dielectric, and electrical characterization of BiNaZnMoO\(_{6}\) double perovskite
electrical characterization of BiNaZnMoO6 double perovskite
DOI:
https://doi.org/10.55713/jmmm.v35i2.2244Keywords:
BiNaZnMoO₆ ceramic, orthorhombic crystal symmetry, SEM micrograph, semiconducting nature, thermally activated conduction mechanismAbstract
This study investigates the structural, microstructural, dielectric, and electrical properties of BiNaZnMoO₆ (BNZM) ceramic synthesized using a conventional solid-state reaction method. Preliminary structural analysis using X-ray diffraction (XRD) suggests orthorhombic crystal symmetry. Scanning electron microscopy (SEM) micrographs reveal a uniform distribution of well-grown grains with well-defined grain boundaries, which may contribute to the enhanced dielectric properties. Energy dispersive X-ray spectroscopy (EDX) analysis confirms the presence of all constituent elements Bi, Na, Zn, Mo, and O in the studied sample. Dielectric spectra analysis as a function of frequency and temperature indicates the formation of high-quality dielectric materials, evidenced by a high dielectric constant and low loss. Impedance spectroscopy supports the semiconducting nature of the sample. Modulus analysis reveals a non-Debye type of relaxation process. The study of AC conductivity suggests a thermally activated conduction mechanism. Furthermore, Cole-Cole and Nyquist plots confirm the semiconducting behavior, which is corroborated by resistance versus temperature analysis. These findings suggest potential applications in energy storage devices.
Downloads
References
S.-S. Rong, M. B. Faheem, and Y.-B. Li, "Perovskite single crystals: Synthesis, properties, and applications," Journal of Electronic Science and Technology, vol. 19, p. 100081, 2021. DOI: https://doi.org/10.1016/j.jnlest.2021.100081
N. K. Elangovan, R. Kannadasan, B. B. Beenarani, M. H. Alsharif, M.-K. Kim, and Z. H. Inamul, "Recent developments in perovskite materials, fabrication techniques, band gap engineering, and the stability of perovskite solar cells," Energy Reports, vol. 11, pp. 1171-1190, 2024. DOI: https://doi.org/10.1016/j.egyr.2023.12.068
W. Li, Z.-M. Wang, F. Deschler, S. Gao, R. H. Friend, and A. K. Cheetham, "Chemically diverse and multifunctional hybrid organic-inorganic perovskites," Nature Reviews Materials, vol. 2, p. 16099, 2017. DOI: https://doi.org/10.1038/natrevmats.2016.99
N. H. Tiep, Z.-L. Ku, and H.-J. Fan, "Recent advances in improving the stability of perovskite solar cells," Advanced Energy Materials, vol. 6, p. 1501420, pp. 1-19, 2016. DOI: https://doi.org/10.1002/aenm.201501420
N. J. Jeon, J. H. Noh, W.-S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, "Compositional engineering of perovskite materials for high-performance solar cells," Nature, vol. 517, pp. 476-480, 2015. DOI: https://doi.org/10.1038/nature14133
S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, "Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber," Science, vol. 342, pp. 341-344, 2013. DOI: https://doi.org/10.1126/science.1243982
N. Suresh Kumar, and K. Chandra Babu Naidu, "A review on perovskite solar cells (PSCs), materials and applications," Journal of Materiomics, vol. 7, pp. 940-956, 2021. DOI: https://doi.org/10.1016/j.jmat.2021.04.002
B. Niu, F. Jin, L. Zhang, P. Shen, and T. He, "Performance of double perovskite symmetrical electrode materials Sr2TiFe1–xMoxO6–δ (x=0.1,0.2) for solid oxide fuel cells," Electrochimica Acta, vol. 263, pp. 217–227, 2018. DOI: https://doi.org/10.1016/j.electacta.2018.01.062
Q. Sun, Z. Dai, Z. Zhang, Z. Chen, H. Lin, Y. Gao, and D. Chen, "Double perovskite PrBaCo2O5.5: An efficient and stable electro-catalyst for hydrogen evolution reaction," Journal of Power Sources, vol. 427, pp. 194-200, 2019. DOI: https://doi.org/10.1016/j.jpowsour.2019.04.070
S. S. Nair, L. Krishnia, A. Trukhanov, P. Thakur, and A. Thakur, "Prospect of double perovskite over conventional perovskite in photovoltaic applications," Ceramics International, vol. 48, pp. 34128-34147, 2022. DOI: https://doi.org/10.1016/j.ceramint.2022.08.184
H. Lin, P. Liu, S. Wang, Z. Zhang, Z. Dai, S. Tan, and D. Chen, "A highly efficient electrocatalyst for oxygen reduction reaction: Three-dimensionally ordered macroporous perovskite LaMnO3," Journal of Power Sources, vol. 412, pp. 701-709, 2019. DOI: https://doi.org/10.1016/j.jpowsour.2018.12.005
S. Dixit, "Solar technologies and their implementations: A review," Materials Today: Proceedings, vol. 28, pp. 2137-2148, 2020. DOI: https://doi.org/10.1016/j.matpr.2020.04.134
G.-H. Kim, and D. S. Kim, "Development of perovskite solar cells with >25% conversion efficiency," Joule, vol. 5, pp. 1033-1035, 2021. DOI: https://doi.org/10.1016/j.joule.2021.04.008
P. A. Jebakumar, D. J. Moni, D. Gracia, and M. D. Shallet, "Design and simulation of inorganic perovskite solar cell," Applied Nanoscience, vol. 12, pp. 1507-1518, 2022. DOI: https://doi.org/10.1007/s13204-021-02268-7
M. U. Rehman, Q. Wang, and Y. Yu, "Electronic, magnetic and optical properties of double perovskite compounds: A first principle approach," Crystals, vol. 12, p. 1597, 2022 DOI: https://doi.org/10.3390/cryst12111597
R. Das, S. Bhattacharya, A. Haque, D. Ghosh, O. I. Lebedev, A. Gayen, and M. M. Seikh, "A comparative magnetic behavior of conventional and high entropy double perovskites: La2Mn CoO6 and (La0.4Y0.4Ca0.4Sr0.4Ba0.4)MnCoO6," Journal of Magnetism and Magnetic Materials, vol. 538, p. 168267, 2021. DOI: https://doi.org/10.1016/j.jmmm.2021.168267
Z. Pei, K. Leng, W. Xia, Y. Lu, H. Wu, and X. Zhu, "Structural characterization, dielectric, magnetic and optical properties of double perovskite Bi2FeMnO6 ceramics," Journal of Magnetism and Magnetic Materials, vol. 508, p. 166891, 2020. DOI: https://doi.org/10.1016/j.jmmm.2020.166891
S. Mishra, R. N. P. Choudhary, and S. K. Parida, "Structural, dielectric, electrical and optical properties of Li/Fe modified barium tungstate double perovskite for electronic devices,” Ceramics International, vol. 48, pp. 17020-17033, 2022. DOI: https://doi.org/10.1016/j.ceramint.2022.02.257
B. D. Cullity, and R. S. Stock, Elements of X-Ray Diffraction., New Jersey: Prentice-Hall, 2001.
A. B. J. Kharrat, N. Moutia, K. Khirouni, and W. Boujelben, "Investigation of electrical behavior and dielectric properties in polycrystalline Pr0.8Sr0.2MnO3 manganite perovskite,” Materials Research Bulletin, vol. 105, pp. 75-83, 2018. DOI: https://doi.org/10.1016/j.materresbull.2018.04.035
H. P. P. V. Shanmugasundram, E. Jayamani, and K. H. Soon, "A comprehensive review on dielectric composites: Classification of dielectric composites," Renewable and Sustainable Energy Reviews, vol. 157, p. 112075, 2022. DOI: https://doi.org/10.1016/j.rser.2022.112075
M. M. Salem, L. V. Panina, E. L. Trukhanova, M. A. Darwish, A. T. Morchenko, T. I. Zubar, S. V. Trukhanov, and A. V. Trukhanov, "Structural, electric and magnetic properties of (BaFe11.9A0.1O19)1-x - (BaTiO3)x composites," Composites Part B: Engineering, vol. 174, p. 107054, 2019. DOI: https://doi.org/10.1016/j.compositesb.2019.107054
V. Koval, G. Viola, M. Zhang, M. Faberova, R. Bures, and H. Yan, "Dielectric relaxation and conductivity phenomena in ferroelectric ceramics at high temperatures," Journal of the European Ceramic Society, vol. 44, pp. 2886-2902, 2024 DOI: https://doi.org/10.1016/j.jeurceramsoc.2023.12.015
J. R. Macdonald, "Theory of space-charge polarization and electrode-discharge effects," The Journal of Chemical Physics, vol. 58, no. 11, pp. 4982-5001, 1973. DOI: https://doi.org/10.1063/1.1679086
M. Maglione, "Free charge localization and effective dielectric permittivity in oxides," Journal of Advanced Dielectrics, vol. 6, p. 1630006, 2016 DOI: https://doi.org/10.1142/S2010135X16300061
N. Hirose, and A. R. West, "Impedance spectroscopy of undoped BaTiO3 ceramics," Journal of the American Ceramic Society, vol. 79, pp. 1633-1641, 1996. DOI: https://doi.org/10.1111/j.1151-2916.1996.tb08775.x
S. Mishra, R. N. P. Choudhary, and S. K. Parida, "A novel double perovskite BaKFeWO6: Structural, microstructural, dielectric and optical properties," Inorganic Chemistry Communications, vol. 145, p. 110068, 2022. DOI: https://doi.org/10.1016/j.inoche.2022.110068
K. S. Cole, and R. H. Cole, "Dispersion and absorption in dielectrics I. Alternating current characteristcs," The Journal of Chemical Physics, vol. 9, pp. 341-351, 1941. DOI: https://doi.org/10.1063/1.1750906
J. T. Irvine, D. C. Sinclair, and A. R. West, "Electroceramics: characterization by impedance spectroscopy," Advanced Materials, vol. 2, pp. 132-138, 1990. DOI: https://doi.org/10.1002/adma.19900020304
S. Mishra, S.K. Parida, "Electrical and optical properties of a lead-free complex double perovskite BaNaFeMoO6: Photo-voltaic and thermistor applications," Materials Science and Engineering: B, vol. 296, pp. 116629-116645, 2023 DOI: https://doi.org/10.1016/j.mseb.2023.116629
X. Guo, Z. Zhang, W. Sigle, E. Wachsman, and R. Waser, "Schottky barrier formed by a network of screw dislocations in SrTiO3," Applied Physics Letters, vol. 87, p. 162105, 2005 DOI: https://doi.org/10.1063/1.2112202
S. K. Parida, S. Moharana, S. Sagadevan, “A double perovskite BaSrTiMnO6: Synthesis, microstructural, transport and optical properties for NTC thermistor applications,” Journal of Molecular Structure, vol. 1316, pp. 138925, 2024 DOI: https://doi.org/10.1016/j.molstruc.2024.138925
B. Tilak, "Ferroelectric relaxor behavior and spectroscopic properties of Ba2+ and Zr4+ modified sodium bismuth titanate, ”American Journal of Materials Science, vol. 2, pp. 110-118, 2012. DOI: https://doi.org/10.5923/j.materials.20120204.03
K. Kumari, A. Prasad, and K. Prasad, "Dielectric, impedance/ modulus, and conductivity studies on [Bi0.5(Na1-xKx)0.5] 0.94Ba0.06 TiO3 (0.16 ≤ x ≤ 0.20) lead-free ceramics," American Journal of Materials Science, vol. 6, pp. 1-18, 2016.
K. Kumari, A. Prasad, and K. Prasad, "Dielectric, impedance/ modulus, and conductivity studies on [Bi0.5(Na1-xKx)0.5] 0.94Ba0.06TiO3 (0.16 ≤ x ≤ 0.20) lead-free ceramics," American Journal of Materials Science, vol. 6, pp. 1-18, 2016.
A. K. Jonscher, "Dielectric relaxation in solids," Journal of Physics D: Applied Physics, vol. 32, pp. R57-R70, 1999. DOI: https://doi.org/10.1088/0022-3727/32/14/201
A. Goswami, and P. K. Mahapatra, "Impedance spectroscopy and Cole-Cole analysis of dielectric properties in lead-based ceramic materials," Ceramics International, vol. 40, pp. 7291-7300, 2014.
R. K. Upadhyay, and R. Kumar, "Analysis of Cole-Cole impedance plots of dielectric ceramics using complex impedance spectroscopy," Materials Science and Engineering: B, vol. 177, pp. 923-929, 2012
R. Kumar, and S. B. Rai, "Electrical and dielectric properties of ferrite ceramics through nyquist plot interpretation," Journal of Materials Science: Materials in Electronics, vol. 28, pp. 7893-7900, 2017.
W. Song, and Y. H. Lee, "Nyquist plot analysis of electrical properties in perovskite-based ceramics," Solid State Ionics, vol. 181, pp. 1658-1664, 2010.
S. Ghosh, and T. P. Sinha, "AC Conductivity and dielectric relaxation in perovskite oxides: Frequency and temperature analysis," Journal of Applied Physics, vol. 98, p. 074109, 2005.
A. Kumar, and R. Prakash, "Temperature and frequency dependence of AC conductivity in ferrite ceramics," Journal of Materials Science: Materials in Electronics, vol. 23, pp. 940-947, 2012.
P. Lunkenheimer, and A. Loidl, "AC conductivity studies on relaxor ferroelectric ceramics: Frequency and temperature dependence," Physical Review B, vol. 67, no. 5, p. 052102, 2003.
B. V. R. Chowdari, and L. Guo, "AC conductivity and dielectric properties of perovskite ceramics at various temperatures," Solid State Ionics, vol. 86-88, pp. 1007-1012, 1996. DOI: https://doi.org/10.1016/S0167-2738(96)90296-9
H. S. Nagaraja, and R. V. Anavekar, "Frequency and temperature dependence of AC conductivity in MgO-based ceramic compounds," Materials Science and Engineering: B, vol. 140, pp. 20-25, 2007.
D. C. Sinclair, and A. R. West, "Impedance and modulus spectroscopy of semiconducting BaTiO₃ showing positive temperature coefficient of resistance," Journal of Applied Physics, vol. 66, pp. 3850-3856, 1989. DOI: https://doi.org/10.1063/1.344049
A. Feteira, "Negative temperature coefficient resistance (NTCR) ceramic thermistors: An industrial perspective," Journal of the American Ceramic Society, vol. 92, pp. 967-983, 2009. DOI: https://doi.org/10.1111/j.1551-2916.2009.02990.x
Y. Saad, I. Álvarez-Serrano, M. L. López, and M. Hidouri, "Dielectric response and thermistor behavior of lead-free x NaNbO3–(1–x) BiFeO3 electroceramics," Ceramics International, vol. 44, pp. 18560-18570, 2018. DOI: https://doi.org/10.1016/j.ceramint.2018.07.078
S. Sahoo, "Enhanced time response and temperature sensing behavior of thermistor using Zn-doped CaTiO3 nano-particles," Journal of Advanced Ceramics, vol. 7, pp. 99-108, 2018. DOI: https://doi.org/10.1007/s40145-018-0261-9
P. Acharya, R. N. P. Choudhary, and S. K. Parida, "Effect of lanthanum on structural, dielectric, electrical, and optical properties of the bismuth ferrite," Brazilian Journal of Physics, vol. 54, pp. 1-18, 2024. DOI: https://doi.org/10.1007/s13538-023-01391-w
P. Mallick, S. K. Satpathy, and B. Behera, "Study of structural, dielectric, electrical, and magnetic properties of samarium-doped double perovskite material for thermistor applications," Brazilian Journal of Physics, vol. 52, pp. 187-201, 2022. DOI: https://doi.org/10.1007/s13538-022-01190-9
P. Mallick, R. Patra, D. Mohanty, and S. K. Satpathy, "Development and characterization of copper-doped perovskite-polymer composite through high-temperature technique, Sådhanå, vol. 47, pp. 134-140, 2022. DOI: https://doi.org/10.1007/s12046-022-01904-4
M. K. Sahu, P. Mallick, S. K. Satpathy, and B. Behera, "Structural, dielectric, and electrical study of bismuth ferrite-lithium vanadate," The European Physical Journal Applied Physics, vol. 97, pp. 72-78, 2022. DOI: https://doi.org/10.1051/epjap/2022220031

Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Journal of Metals, Materials and Minerals

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.