The effects of graphene nanoplatelets and microcrystalline cellulose on the mechanical properties of fiberglass and carbon fiber composites

Authors

  • Duangjai SRISAMUT Graduate School, Navaminda Kasatriyadhiraj Royal Air Force Academy, Mittraphap, Muak Lek District, Saraburi, 18180, Thailand; Synchrotron Light Research Institute (public organization), 111 Sirinthon Witchothai Building, University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
  • Nathawat POOPAKDEE Navaminda Kasatriyadhiraj Royal Air Force Academy, Mittraphap, Muak Lek District, Saraburi, 18180, Thailand https://orcid.org/0000-0003-1589-4636
  • Warut THAMMAWICHAI Navaminda Kasatriyadhiraj Royal Air Force Academy, Mittraphap, Muak Lek District, Saraburi, 18180, Thailand

DOI:

https://doi.org/10.55713/jmmm.v35i3.2272

Keywords:

Carbon fiber, Fiberglass, Graphene nanoplatelets, Microcrystalline cellulose, Mechanical properties

Abstract

This study investigated how graphene nanoplatelets (GNP) and microcrystalline cellulose (MCC) affect the mechanical properties of epoxy (EP), carbon fiber (CF), and fiberglass (FG) composites. The tensile and flexural properties of GNP-EP and MCC-EP of  varying reinforcement concentrations were examined. Results indicated significant improvements on tensile and flexural properties by GNP and MCC. At 0.1 wt% GNP, tensile and flexural strengths increased by 10% and 21%, while 2.0 wt% improved flexural modulus by 65%. Similarly, 2.0 wt% MCC improved tensile strength, modulus, and flexural modulus by 11%, 11%, and 46%, respectively, and a 26% increase in flexural strength at 1.0 wt%. These concentrations were used to reinforce CF and FG composites. For CF composites, GNP effectively enhanced mechanical properties due to good dispersion and strong interface formation, resulting in a 14% increase in tensile strength and a 32% increase in modulus with 0.1 wt% GNP, while 2.0 wt% improved flexural strength by 36%. However, MCC showed a lesser impact, enhancing tensile modulus by 37% at 2.0 wt% but negatively affecting flexural performance, likely due to property mismatches. In FG composites, both additives had negative impacts, with only minimal improvements in flexural properties at specific concentrations, likely due to materials incompatibility.

Downloads

Download data is not yet available.

References

Y. C. Chiou, H. Y. Chou, and M. Y. Shen, “Effects of adding graphene nanoplatelets and nanocarbon aerogels to epoxy resins and their carbon fiber composites,” Materials and Design, vol. 178, p. 107869, 2019. DOI: https://doi.org/10.1016/j.matdes.2019.107869

L. Yue, G. Pircheraghi, S. A. Monemian, and I. M. Zloczower, “Epoxy composites with carbon nanotubes and graphene nano-platelets - Dispersion and synergy effects,” Carbon, vol. 78, pp. 268-278, 2014. DOI: https://doi.org/10.1016/j.carbon.2014.07.003

J. Cha, J. Kim, S. Ryu, and S. H. Hong, “Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets,” Composites Part B: Engineering, vol. 162, pp. 283-288, 2018. DOI: https://doi.org/10.1016/j.compositesb.2018.11.011

J. Cha, G. H. Jun, J. K. Park, J. C. Kim, H. J. Ryu, and S. H. Hong, “Improvement of modulus, strength and fracture toughness of CNT/Epoxy nanocomposites through the functionalization of carbon nanotubes,” Composites Part B: Engineering, vol. 129, pp. 169-179, 2017. DOI: https://doi.org/10.1016/j.compositesb.2017.07.070

P. Prasanthi, M. S. R. N. Kumar, S. C. Mallampati, V. V. V. Madhav, K. K. Saxena, K. A. Mohammed, M. Khan, G. Upadhyay, and S. M. Eldin “Mechanical properties of carbon fiber reinforced with carbon nanotubes and graphene filled epoxy composites: experimental and numerical investigations,” Published by IOP Publishing Ltd, Materials Research Express, vol.10, 2023. DOI: https://doi.org/10.1088/2053-1591/acaef5

J. Cha, J. Kim, S. Ryu, and S. H. Hong,” Strengthening effect of melamine functionalized low-dimension carbon at fiber reinforced polymer composites and their interlaminar shear behavior,” Composites Part B: Engineering, vol. 173, p. 106976, 2019. DOI: https://doi.org/10.1016/j.compositesb.2019.106976

E. C. Emenike, K. O. Iwuozor, O. D. Saliu, J. Ramontja, Adewale, and G. Adeniyi, “Advances in the extraction, classification, modification, emerging and advanced applications of crystalline cellulose: A review,” Carbohydrate Polymer Technologies and Applications, vol. 6, p. 100337, 2023. DOI: https://doi.org/10.1016/j.carpta.2023.100337

A. Alshaghel, S. P. Rana, and R. Fangueiro, “Effect of multiscale reinforcement on the mechanical properties and microstructure of microcrystalline cellulose-carbon nanotube reinforced cementitious composites” Composites Part B: Engineering, vol. 149 pp. 122-134, 2018. DOI: https://doi.org/10.1016/j.compositesb.2018.05.024

T. Topkaya, Y. H. Çelik and E. Kilickap, “Mechanical properties of fiber/graphene epoxy hybrid composites,” Journal of Mechanical Science and Technology, vol. 34, no. 11, 2020. DOI: https://doi.org/10.1007/s12206-020-1016-4

A. Namdev, A. Telang, and R. Purohit, “Experimental investigation on mechanical and wear properties of GNP/Carbon fiber/epoxy hybrid composites,” Published by IOP Publishing Ltd, Materials Research Express, vol. 9, p. 025303, 2022. DOI: https://doi.org/10.1088/2053-1591/ac4e3f

A. K. Srivastava, V. Gupta, C. S. Yerramalli, and A. Singh, “Flexural strength enhancement in carbon-fiber epoxy composites through graphene nano-platelets coating on fibers,” Composites Part B: Engineering, vol. 179, p. 107539, 2019. DOI: https://doi.org/10.1016/j.compositesb.2019.107539

I. Srikanth, A. R. Dixit, and S. Murthy, “Challenges in processing graphene nanoplatelet based epoxy composites: A review,” Journal of Reinforced Plastics and Composites, vol. 39, no. 10, pp. 396-420, 2020.

S. S. Joshi, P. K. Bajaj, and A. Jindal, “A review on issues and challenges related to graphene nanoplatelet (GNP) reinforced polymer composites,” Journal of Composite Materials, vol. 53, no. 2, pp. 159-190, 2019

M. M. Rehman, M. Zeeshan, K. Shaker, and Y. Nawab, “Effect of micro-crystalline cellulose particles on mechanical properties of alkaline treated jute fabric reinforced green epoxy composite,” Cellulose, vol. 26, pp. 9057-9069, 2019. DOI: https://doi.org/10.1007/s10570-019-02679-4

N. Saba, M. Jawaid, and O. Alothman, “A review on the mechanical properties of polymer composites reinforced by cellulose based fibers,” Composites Part B: Engineering, vol. 76, pp. 82-93, 2015.

F. Wang, L. T. Drzal, Y. Qin, and Z. Huang, “Size effect of graphene nanoplatelets on the morphology and mechanical behavior of glass fiber/epoxy composites,” Journal of Materials Science, vol. 51, pp. 3337-3348, 2016. DOI: https://doi.org/10.1007/s10853-015-9649-x

Z. A. Ghaleb, M. Mariatti, and Z. M. Ariff, “Graphene nano-particle dispersion in epoxy thin film composites for electronic applications: effect on tensile, electrical and thermal properties,” Journal of Materials Science: Materials in Electronics, vol. 28, pp. 808-817, 2017. DOI: https://doi.org/10.1007/s10854-016-5594-y

S. Feli, and M. M Jalilian, “Experimental and optimization of mechanical properties of epoxy/nanosilica and hybrid epoxy/ fiberglass/nano silica composites,” Journal of Composite Materials, pp. 1-13, 2016. DOI: https://doi.org/10.1177/0021998315627198

U. Zaheer, A. A. Khurram, and T. Subhani, “A treatise on multiscale glass fiber epoxy matrix composites containing graphene nanoplatelets,” Advanced Composites and Hybrid Materials, vol. 1, pp. 705-721, 2018. DOI: https://doi.org/10.1007/s42114-018-0057-y

M. H. Gabr, M. A Elrahman, K. Okubo, and T. Fujii, “Effect of microfibrillated cellulose on mechanical properties of plain-woven CFRP reinforced epoxy,” Composite Structures, vol. 92, pp. 1999-2006, 2010. DOI: https://doi.org/10.1016/j.compstruct.2009.12.009

N. Poopakdee, and W. Thamawichai, “Fabrication and mechanical properties of multi-walled carbon nanotube and cellulose microfibril reinforced epoxy composites” Proceedings of Researchfora International Conference, Kyoto, Japan, 27th-28th September 2019.

A. K. Bandaru, S. Pichandi, H. Ma, M. Panchal, and R. Gujjala, “Effect of microcrystalline cellulose on the mechanical properties of flax reinforced methylmethacrylate and urethane acrylate composites,” Journal of Materials Science, vol. 59, pp. 2872-2892, 2024. DOI: https://doi.org/10.1007/s10853-024-09349-2

M. M. Shokrieh, S. M. Ghoreishi, M. Esmkhani, and Z. Zhao, “Effects of graphene nanoplatelets and graphene nanosheets on fracture toughness of epoxy nanocomposites,” Fatigue & Fracture of Engineering Materials & Structures, vol. 37, pp. pp.1116-1123, 2014. DOI: https://doi.org/10.1111/ffe.12191

B. Wang, R. Jiang, and Z. Wu, “Investigation of the mechanical properties and microstructure of graphene nanoplatelet-cement composite,” Multidisciplinary Digital Publishing Institute (MDPI), vol. 11, p. 100, 2016. DOI: https://doi.org/10.3390/nano6110200

A. K. Srivastava, and A. Singh, “Effect of GNP coating on carbon fibers on the deformation modes of composites under flexural loading,” Polymer Composites, vol. 45, pp. 4078-4092, 2016 DOI: https://doi.org/10.1002/pc.28043

C. Su, J. Guo, J. Cheng, J. Zhang, and F. Gao, “Heterogeneous

epoxidation of microcrystalline cellulose and the toughening effect toward epoxy resinclick to copy article link,” Industrial & Engineering Chemistry Research, vol. 62, 2013.

S. Thanomchat, K. Srikulkit, B. Suksut, and A. K. Schlarb “Morphology and crystallization of polypropylene/micro-fibrillated cellulose composites,” Industrial & Engineering Chemistry Research, vol. 7, p. 4, 2014. DOI: https://doi.org/10.14416/j.ijast.2014.09.002

L. Z. Zhang, Y. Ritchie, and R. O. Li, “Natural cellulose fiber reinforced polyvinyl alcohol composite film with enhanced mechanical properties,” Composites Part B: Engineering, vol. 139, pp. 146-152. 2018.

H. Y. Cheung, M. P. Ho, K. T. Lau, F. Cardona, and D. Hui, “Natural fibre-reinforced composites for bioengineering and environmental engineering applications,” Composites Part B: Engineering, vol. 40, pp. 655-663, 2009. DOI: https://doi.org/10.1016/j.compositesb.2009.04.014

M. Jawaid, H. P. S. Abdul Khalil, “Cellulosic/synthetic fibre

reinforced polymer hybrid composites: A review,” Carbohydrate Polymers, vol.86, pp. 1-18, 2011.

S. G. Prolongo, R. Moriche, A. Jiménez-Suárez, M. Sánchez, and A. Ureña, “Epoxy adhesives modified with graphene for thermal interface materials,” The Journal of Adhesion, vol.90, pp. 835-847, 2014. DOI: https://doi.org/10.1080/00218464.2014.893510

M. M. Shokrieh, M. Esmkhani1, H. R. Shahverdi, and F. Vahedi, “Effect of graphene nanosheets (GNS) and graphite nanoplatelets (GNP) on the mechanical properties of epoxy nanocomposites,” Science of Advanced Materials, vol. 5, pp. 1-7, 2013. DOI: https://doi.org/10.1166/sam.2013.1453

P. K. Mallick, “Fiber-reinforced composites materials”, Manufacturing and Design. New York: CRC Press, Inc., 2008. DOI: https://doi.org/10.1201/9781420005981

N. Sapiai, A. Jumahat, and R. N. Hakim, “Tensile and compressive properties of hybrid carbon fiber/kenaf polymer composite,” Advances in Environmental Biology, vol. 8, no. 8, pp. 2655-2661, 2014.

O. ASI, “Mechanical properties of glass-fiber reinforced epoxy composites filled with Al2O3 particle,” Journal of Reinforced Plastics and Composites, vol. 28, no. 23, 2009. DOI: https://doi.org/10.1177/0731684408093975

M. S. Radue, G. M. Odegard, “Mechanical properties of epoxy and its carbon fiber composites modified by nanoparticles,” Hindawi Journal of Nanomaterials, vol. 9, 2017. DOI: https://doi.org/10.1155/2017/8146248

Downloads

Published

2025-08-26

How to Cite

[1]
D. SRISAMUT, N. POOPAKDEE, and W. . THAMMAWICHAI, “The effects of graphene nanoplatelets and microcrystalline cellulose on the mechanical properties of fiberglass and carbon fiber composites ”, J Met Mater Miner, vol. 35, no. 3, p. e2272, Aug. 2025.