Effect of solution annealing temperature on structure and mechanical properties of EN AW 2024 aluminium alloy

Authors

  • Martin Fujda Department of Materials Science, Faculty of Metallurgy, Technical University of Košice
  • Rudolf Mišičko Department of Materials Science, Faculty of Metallurgy, Technical University of Košice
  • Lucia RUSŇÁKOVÁ Department of Materials Science, Faculty of Metallurgy, Technical University of Košice
  • Martin Sojko Department of Materials Science, Faculty of Metallurgy, Technical University of Košice

Keywords:

EN AW 2024 aluminium alloy, solution annealing temperature, mechanical properties, hardness, microstructure, grain growth, intermetallic particles

Abstract

The effect of solution annealing temperature on the change of microstructural and mechanical properties of EN AW 2024 aluminium alloy was investigated using a metallographic analysis, Vickers hardness measurement and tensile test. An intensive growth of solid solution grains was the result of the increase of solution annealing temperature by the finely dispersed particles dissolved during applied annealing process. The role of these finely dispersed particles was to inhibit the recrystallization process and grain growth of solid solution matrix through its pinning effect on the migrated solid solution grain boundaries. Observed changes of the microstructure involved the strength decline and plasticity enhancement of analysed alloy quenched after solution annealing as well as the hardness decrease of naturally aged alloy.

Downloads

Download data is not yet available.

References

Polmear, I. J. 1995. Light Alloys. London : Arnold.

Cubberly, W. H.1979. Metals Handbook. 9th ed. Metals Park, OH : ASM.

Ratchev, P., Verlinden, B., De Smet, P. and Van Houtte, P. 1999. Mater.Trans. JIM 40 : 34.

Mondolfo L. F. 1976. Aluminium Alloys: Structure and properties. London : Butterworth.

Hardy, H. K. 1954-55. J. Inst. Metals. 83 : 17.

Bagaryatsky, Yu. A. 1952. Dokl. Acad. Nauk SSSR. 87 : 397.

Ringer, S. P., Sakurai, T. and Polmear, I. J. 1997. Origins of Hardening in Aged AlGu-Mg(Ag) Alloys. Acta Mater. 48 : 2751.

Silcock, J. M. 1960-61. J. Inst. Met. 89 : 203.

Cuisiat, F., Duval, P. and Graf, R. 1984. Scr. Metall. 18 : 1051.

Abis, S., Massazza, M., Mengucci, P. and Riontino, G. 2001. Early Ageing Mechanisms in a High-Copper AlCuMg Alloy. Scr. Mater. 45(6) : 685-691.

Wang, S. C. and Starink, M. J. 2007. Two Types of S Phase Precipitates in Al-Cu-Mg Alloys. Acta Mater. 55(3) : 933-941.

Garrett, G. G., Knott, J. F. 1978. Metall. Trans. A. 9 : 1187.

Liu, Gang., Sun, Jun. Nan, Ce-Wen and Chen, Kang-Hua. 2005. Experiment and Multiscal Modelling of the Coupled Influence of Constituents and Precipitates on the Ductile Fracture of Heat-Treatable Aluminium Alloys. Acta Mater. 53(12) : 3459-3468.

Cox, T. B. and Low, J. R. 1974. Metall. Trans. A. 5 : 459.

Hahn, G. T. and Rosenfield, A. R. 1975. Metall. Trans. A. 6 : 653.

Jiang, D. and Wang, C. 2003. Influence of Microstructure on Deformation Behaviour and Fracture Mode of Al-Mg-Si Alloys. Mater. Sci. Eng. A352(1-2) : 29-33.

Fujda, M. and Vojtko, M. 2007. Acta Metall. Slovaca. 13 (special issue) 1 : 585.

Downloads

Published

2017-04-23

How to Cite

[1]
M. Fujda, R. Mišičko, L. RUSŇÁKOVÁ, and M. Sojko, “Effect of solution annealing temperature on structure and mechanical properties of EN AW 2024 aluminium alloy”, J Met Mater Miner, vol. 17, no. 1, Apr. 2017.

Issue

Section

Original Research Articles