Microstructure and mechanical properties of EN AW 6082 aluminium alloy prepared by equal-channel angular pressing
Keywords:
EN AW 6082 aluminium alloy, severe plastic deformation, ECAP, mechanical properties, microstructure, deformation strengthening, precipitationAbstract
The mechanical properties and microstructure of EN AW 6082 aluminium alloy subjected to severe plastic deformation (SPD) and natural ageing are compared with those of extruded and artificially aged state (initial state) and quenched state of alloy after solution annealing. Quenched state of alloy was deformed at room temperature by equal channel angular pressing (ECAP) following route C up to three passes. Polyedric microstructure of quenched state was considerably changed by SPD. Deformation bands with different amount of deformation were observed in microstructure of ECAPed state, which indicated non-uniform deformation across the cross-section of ECAPed specimen. Ultimate tensile strength (UTS) and especially yield strength (0.2% YS) were considerably increased by SPD, but plasticity was decreased. Increase of strength of ECAPed state was first of all evoked by the deformation strengthening.Downloads
References
Humphreys, F. J. and Hatherly, M. 1996. Recrystallization and Related Annealing Phenomena. Oxford : Elsevier : 205
Valiev, R. Z., Krasilnikov, N. A. and Tsenev, N. K. 1991. Mater. Sci. Eng. A 137 : 3317.
Horita, Z., Fujinami, T., Nemoto, M. and Langdon, T. G. 2001. Improvement of mechanical properties for AI alloys using equal-channel angular pressing. J.Mater. Process. Technol. 117 : 288 – 292.
Furukawa, M., Horita, Z., Nemoto, M., Valiev, R. Z. and Langdon, T. G. 1996. Mater. Character. 37 : 277.
Valiev, R. Z., Estrin, Y., Horita, Z. and Langdon, T. G., Zehetbauer, M., Zhu, Y.T: JOM. 58 : 33.
Lowe, T.C., Valiev, R.Z. 2000. Investigations and Applications of Severe Plastic Deformation. Kluwer : Dordrecht, the Netherlands.
Zehetbauer, M. J. and Valiev, R. Z. 2004. Nanomaterials by Severe Plastic Deformation. Weinheim, Wiley-VCH.
Horita, Z. 2005. Nanomaterials by Severe Plastic Deformation. Uetikon-Zurich : Trans Tech Publications.
Segal, V. M., Reznikov, V.I., Dobryshevskiy, A. E. and Kopylov, V. I. 1981. Rus. Metall. 1 : 99.
Islamgaliev, R. K., Yunusova, N. F., Sabirov, I. N., Sergueeva, A. V. and Valiev, R. Z. 2001. Deformation behaviour of nanostructures aluminum alloy processed by severe plastic deformation. Mater. Sci. Eng. A – Structural Materials Properties Microstructure and Processing. 319 : 877 – 881.
Saito, Y., Utsunomiya, H., Tsuji, N. and Sakai, T. 1999. Novel ultra-high straining process for bulk materials–Development of the accumu- lative roll–bonding (ARB) process. Acta Materialia. 47(2) : 579 – 583.
Zhu, Y. T., Jiang, H., Huang, J. Y. and Lowe, T.C. 2001. Mater. Trans A. 32 : 1559.
Kim, W. J. and Wang, J. Y. 2007. Microstructure of the post-ECAP aging processed 6061 AI alloys. Mater. Sci. Eng. A-Structural Materials Properties Microstructure and Processing. 464(1-2) : 23 – 27.
Cherukuri, B., Nedkova, T. S. and Srinivasan, R. 2005. A comparison of the properties of SPD-processed AA-6061 by equal-channel angular pressing, multi-axial compressions/ forgings and accumulative roll bonding. Mater. Sci. Eng. A-Structural Materials Properties Microstructure and Processing. 410 : 394 – 397.
Werenskiold, J. C. and Roven, H. J. Microstructure and texture evolution during ECAP of an AIMgSi alloy: Observations, mechanisms and modelling. 2005. Mater. Sci. Eng. A-Structural Materials Properties Micro-structure and Processing. 410 – 411 : 174 – 177.
Roven, H. J., Nesboe, H., Werenskiold, J. C. and Seibert, T.2005. Mechanical properties of aluminium alloys processed by SPD: Com-parison of different alloy systems and possible product areas. Mater. Sci. Eng. AStructural Materials Properties Microstructure and Processing. 410 - 411 : 426 – 429.
Leo, P., Cerri, E., De Marco, P. P. and Roven, H. J. 2007. Properties and deformation behaviour of severe plastic deformed alumi-nium alloys. J. Mater. Process. Technol. 182(1-3) : 207 – 214.
Zrník, J., Nový, Z., Kvačkaj, T., Bernášek, V, Kešner, D. and Slámová, M. 2004. Acta Metall. Slovaca. 10 : 277.
Iwahashi, Y., Wang, J., Horita, Z., Nemoto, M. and Langdon, T. G. 1996. Scr. Mater. 35 : 143.
Fujda, M. and Vojtko, M.2007. Acta Metall. Slovaca, 13, SI, 1 : 585.
Parson, N., Hankin, J., Hicklin, K. and Jowett, C. 2000. Proceedings of the 7th International Aluminum Extrusion Technology Seminar, vol. 1. Washington, DC : Aluminum Association : 1.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Journal of Metals, Materials and Minerals
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.