Dry-sliding wear of the 316L/h-BN composites produced under crack ammonia atmosphere
DOI:
https://doi.org/10.55713/jmmm.v30i2.700Abstract
Wear is one of different problems in mechanical failures of moving components. When a component encounters friction force on its surface, crack initiation tends to occur and wear follows crack propagation. Thus, the moving parts of automobiles should have proper wear resistance for long-time services, in addition to having high strength and hardness for heavy load operation. A self-lubricating material with compromised tribological and mechanical properties is important for some moving components. In this work, self-lubricating composites, metal matrix composites embedded with a solid lubricant, made from 316L stainless steel powder mixed with different hexagonal boron nitride (h-BN) contents of 10%, 15% and 20% by volume. The mixed powders were compacted into green parts (according with MPIF Standard 42) with density of 6.5 g·cm-3. Then, the green parts were sintered at 1100, 1150, 1200, 1250 and 1300°C under cracked ammonia (75% H2+25% N2) atmosphere for 60 min. The experimental results revealed that increases of hardness and strength sintered 316L matrix by reduction of pore amount and size were due to the increase of sintering temperature. However, the increase of h-BN content resulted in increase of pore amount and size. Additions of h-BN content up to 20 vol. % reduced friction coefficient of the sintered composites. At sintering temperatures of equal to and higher than 1200°C, h-BN did not react with 316L stainless steel powders to form intergranular boride phase. The sintered composites produced under the maximum experimental sintering temperature of 1300°C showed low specific wear rate.Downloads
Download data is not yet available.
Downloads
Published
2020-06-30
How to Cite
[1]
E. Chusong, P. Kansuwan, N. Ohtake, P. Wila, N. Tosangthum, and R. Tongsri, “Dry-sliding wear of the 316L/h-BN composites produced under crack ammonia atmosphere”, J Met Mater Miner, vol. 30, no. 2, Jun. 2020.
Issue
Section
Original Research Articles
License
Copyright (c) 2020 Journal of Metals, Materials and Minerals
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.