Bagasse lignin for single-used food packaging applications: UV-barrier, antioxidant, migration and cytotoxicity

Authors

  • Pawarisa WIJARANAKUL National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, 114 Thailand Science Park, Khlong Luang, Pathum Thani, 12120, Thailand
  • Bongkot HARARAK National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, 114 Thailand Science Park, Khlong Luang, Pathum Thani, 12120, Thailand
  • Wanwitoo WANMOOLEE Department of Chemical Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, 10800, Thailand
  • Prapudsorn WANNID National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, 114 Thailand Science Park, Khlong Luang, Pathum Thani, 12120, Thailand
  • Weerawan LAOSIRIPOJANA Department of Tool and Materials Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, 10140, Thailand

DOI:

https://doi.org/10.55713/jmmm.v35i3.2354

Keywords:

PLA bio composites, Sugarcane bagasse lignin, UV shielding

Abstract

This study examined PLA biocomposite films made from organosolv lignin extracted from Thai agro-waste, specifically sugarcane bagasse (BG), to assess their suitability for food packaging, focusing on their physical, thermal, optical, UV-shielding, antioxidant, and migration properties. Extracted BG-lignin exhibited free radical scavenging ability with an EC50 value of 400 µg/ml, reducing DPPH absorbance by 50%. PLA composite films with BG-lignin dosage from 0.1 to 1.0 wt.% were successfully fabricated via conventional blown film extrusion. Addition of BG-lignin at 0.5 wt.% and 1.0 wt.% to PLA films decreased UV transmittance from 90% to 30% and 12%, respectively, without compromising optical clarity. Moreover, DPPH scavenging activity of all composite films with different BG-lignin contents (0.1-1.0 wt.%) reached 50% within 24 h, while overall migration values and cytotoxicity level are below the permissible limit. This study demonstrates the potential application of PLA/BG-lignin composite films for single-used ketchup sachets. These films effectively reduce ketchup color change under UV light exposure.

Downloads

Download data is not yet available.

References

Coversio Market and strategy, “Plastic flow 2018.” [Online]. Available: https://www.bkv-gmbh.de/files/bkv-neu/studien/ Global_Plastics_Flow_Feb10_2020.pdf

Plastic europe, “Plastics – the Facts 2020.”

Bioplastics European, “Bioplastics facts and figures.” [Online]. Available:https://docs.european-bioplastics.org/publications/ EUBP_Facts_and_figures.pdf

Y. Kim, J. H. Seo, H. Seo, S. Kim, Y. Lee, K. Kim, and J. Lee, “All biomass and UV protective composite composed of compatibilized lignin and poly (lactic-acid),” Scientific Reports, vol. 7, pp. 6371-6381, 2017.

J. Shojaeiarani, D. S. Bajwa, C. Ryan, and S. Kane, “Enhancing UV-shielding and mechanical properties of polylactic acid nanocomposites by adding lignin coated cellulose nanocrystals,” Industrial Crops and Products, vol. 183, p. 114904, 2022. DOI: https://doi.org/10.1016/j.indcrop.2022.114904

K. Chi, and J. M. Catchmark, “Enhanced dispersion and interface compatibilization of crystalline nanocellulose in polylactide by surfactant adsorption,” Cellulose, vol. 24, pp. 4845-4860, 2017. DOI: https://doi.org/10.1007/s10570-017-1479-3

P. Müller, J. Bere, E. Fekete, J. Móczó, B. Nagy, M. Kállay, B. Kállay, and B. Kállay, “Interactions, structure and properties in PLA/plasticized starch blends,” Polymer, vol. 103, pp. 9-18, 2016. DOI: https://doi.org/10.1016/j.polymer.2016.09.031

W. Yang, Y. Weng, D. Puglia, G. Qi, W. Dong, J. Kenny, and P. Ma, “Poly(lactic acid)/lignin films with enhanced toughness and anti-oxidation performance for active food packaging,” International Journal of Biological Macromolecules, vol. 144, pp. 102-110, 2020. DOI: https://doi.org/10.1016/j.ijbiomac.2019.12.085

W. Yang, F. Dominici, E. Fortunati, J. M. Kenny, and D. Puglia, “Effect of lignin nanoparticles and masterbatch procedures on the final properties of glycidyl methacrylate-g-poly (lactic acid) films before and after accelerated UV weathering,” Industrial Crops and Products, vol. 77, pp. 833-844, 2015. DOI: https://doi.org/10.1016/j.indcrop.2015.09.057

J. Tian, Y. Kong, S. Qian, Z. Zhang, Y. Xia, and Z. Li, “Mechanically robust multifunctional starch films reinforced by surface-tailored nanofibrillated cellulose,” Composites Part B: Engineering, vol. 275, p. 111339, 2024. DOI: https://doi.org/10.1016/j.compositesb.2024.111339

H. Sadeghifar, and A. Ragauskas, “Lignin as a UV Light blocker-a review,” Polymers, vol 15, p. 1134, 2020. DOI: https://doi.org/10.3390/polym12051134

A. J. Basbasan, B. Hararak, C. Winotapun, W. Wanmolee, P. Leelaphiwat, K. Boonruang, and W. Chinsirikul, “Emerging challenges on viability and commercialization of lignin in biobased polymers for food packaging: A review,” Food Packaging and Shelf Life, vol. 34, p. 100969, 2022.

M. Paulsson, and J. Parkås, “Review: Light-induced yellowing of lignocellulosic pulps – Mechanisms and preventive methods,” Bioresources, vol. 7, p. 5995, 2012. DOI: https://doi.org/10.15376/biores.7.4.5995-6040

J. Acosta, E. Figueroa-Espinoza, M. Los, and M. D. L. Á. la Rosa-Alcaraz, “Recent Progress in the Production of Lignin-based Sunscreens: A Review,” Bioresources, vol. 17, pp. 3674-3701, 2022. DOI: https://doi.org/10.15376/biores.17.2.Espinoza

P. Posoknistakul, C. Tangkrakul, P. Chaosuanphae, S. Deepentham, W. Techasawong, N. Phonphirunrot, S. Bairak, C. Sakdaronnarong, and N. Sakdaronnarong, “Fabrication and characterization of lignin particles and their ultraviolet protection ability in PVA composite film,” ACS Omega, vol. 5, pp. 20976-20982, 2020. DOI: https://doi.org/10.1021/acsomega.0c02443

H. Faustino, N. Gil, C. Baptista, and A. P. Duarte, “Antioxidant Activity of Lignin Phenolic Compounds Extracted from Kraft and Sulphite Black Liquors,” Molecules, vol. 15, pp. 9308-9322, 2010. DOI: https://doi.org/10.3390/molecules15129308

B. Jiang, Y. Zhang, L. Gu, W. Wu, H. Zhao, and Y. Jin, “Structural elucidation and antioxidant activity of lignin isolated from rice straw and alkali oxygen black liquor,” International Journal of Biological Macromolecules, vol. 116, pp. 513-519, 2018. DOI: https://doi.org/10.1016/j.ijbiomac.2018.05.063

X. Pan, J. F. Kadla, K. Ehara, N. Gilkes, and J. N. Saddler, “Organosolv ethanol lignin from hybrid poplar as a radical scavenger: Relationship between lignin structure, extraction conditions, and antioxidant activity,” Journal of Agricultural and Food Chemistry, vol. 54, pp. 5806-5813, 2006. DOI: https://doi.org/10.1021/jf0605392

F. G. Calvo-Flores, J. A. Dobado, J. Isac-García, and F. J. Martín-Martínez, “Lignin and lignans as renewable raw materials: chemistry, technology and applications,” John Wiley & Sons Ltd, 2015. DOI: https://doi.org/10.1002/9781118682784

J. F. Leal Silva, P. Y. S. Nakasu, A. C. da Costa, R. Maciel Filho, and S. C. Rabelo, “Techno-economic analysis of the production of 2G ethanol and technical lignin via a protic ionic liquid pretreatment of sugarcane bagasse,” Industrial Crops and Products, vol. 189, p. 115788, 2022. DOI: https://doi.org/10.1016/j.indcrop.2022.115788

T. L. Bezerra, and A. J. Ragauskas, “A review of sugarcane bagasse for second-generation bioethanol and biopower production,” Biofuels, Bioproducts and Biorefining, vol. 10, pp. 634-647, 2016. DOI: https://doi.org/10.1002/bbb.1662

S. Pongchaiphol, N. Suriyachai, B. Hararak, M. Raita, N. Laosiripojana, and V. Champreda, “Physicochemical characteristics of organosolv lignins from different lignocellulosic agricultural wastes,” International Journal of Biological Macromolecules, vol. 216, pp. 710-727, 2022. DOI: https://doi.org/10.1016/j.ijbiomac.2022.07.007

S. Y. Park, J.-Y. Kim, H. J. Youn, and J. W. Choi, “Utilization of lignin fractions in UV resistant lignin-PLA biocomposites via lignin-lactide grafting,” International Journal of Biological Macromolecules, vol. 138, pp. 1029-1034, 2019. DOI: https://doi.org/10.1016/j.ijbiomac.2019.07.157

C. Ma, T.-H. Kim, K. Liu, M.-G. Ma, S.-E. Choi, and C. Si, “multifunctional lignin-based composite materials for emerging applications,” Frontiers in Bioengineering and Biotechnology, vol. 9, 2021. DOI: https://doi.org/10.3389/fbioe.2021.708976

Y. Kim, J. Suhr, H-W. Seo, H. Sun, S. Kim, I-K. Park, S-H. Kim, Y. Lee, K-J. Kim, and J-D. Nam, “All biomass and UV protective composite composed of compatibilized lignin and poly (lactic-acid),” Scientific Reports, vol. 7, p. 43596, 2017. DOI: https://doi.org/10.1038/srep43596

S. R. Yearla, and K. Padmasree, “Preparation and characterisation of lignin nanoparticles: evaluation of their potential as antioxidants and UV protectants,” Journal of Experimental Nanoscience, vol. 11, pp. 289-302, 2016. DOI: https://doi.org/10.1080/17458080.2015.1055842

X. Meng, C. Crestini, H. Ben, N. Hao, Y. Pu, A. Ragauskas, and D. Argyropoulos “Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy,” Nature Protocols, vol. 14, pp. 2627-2647, 2019. DOI: https://doi.org/10.1038/s41596-019-0191-1

D. Araújo, I. da Cruz Filho, T. Santos, D. Pereira, D. Marques, A. da Conceição Alves de Lima, T. de Aquino, G. de Moraes Rocha, M. do Carmo Alves de Lima, and F. Nogueira, “Biological activities and physicochemical characterization of alkaline lignins obtained from branches and leaves of Buchenavia viridiflora with potential pharmaceutical and biomedical applications,” International Journal of Biological Macromolecules, vol. 219, pp. 224-245, 2022. DOI: https://doi.org/10.1016/j.ijbiomac.2022.07.225

X. Zhou, X. Liu, Q. Wang, G. Lin, H. Yang, D. Yu, S. Cui, and W. Xia, “Antimicrobial and antioxidant films formed by bacterial cellulose, chitosan and tea polyphenol – Shelf life extension of grass carp,” Food Packaging and Shelf Life, vol. 33, p. 100866, 2022. DOI: https://doi.org/10.1016/j.fpsl.2022.100866

P. Terzioğlu, F. Güney, F. N. Parın, İ. Şen, and S. Tuna, “Biowaste orange peel incorporated chitosan/polyvinyl alcohol composite films for food packaging applications,” Food Packaging and Shelf Life, vol. 30, p. 100742, 2021. DOI: https://doi.org/10.1016/j.fpsl.2021.100742

G. Cazacu, R. Darie-Nita, O. Chirila, M. Totolin, M. Asandulesa, D. Ciolacu, J. Ludwiczak, and C. Vasile, “Environmentally friendly polylactic acid/modified lignosulfonate biocomposites,” Journal of Polymers and the Environment, vol. 25, no. 3, pp. 884-902, 2017. DOI: https://doi.org/10.1007/s10924-016-0868-2

K. Crouvisier-Urion, P. Bodart, P. Winckler, J. Raya, R. Gougeon, P. Cayot, S. Domenek, F. Debeaufort, and T. Karbowiak, “Biobased composite films from chitosan and lignin: antioxidant activity related to structure and moisture,” ACS Sustainable Chemistry & Engineering, vol. 4, pp. 6371-6381, 2016. DOI: https://doi.org/10.1021/acssuschemeng.6b00956

L. Valencia, E. M. Nomena, A. P. Mathew, and K. P. Velikov, “Biobased cellulose nanofibril–oil composite films for active edible barriers,” ACS Applied Materials & Interfaces, vol. 11, pp. 16040-16047, 2019. DOI: https://doi.org/10.1021/acsami.9b02649

E. S. Esakkimuthu, D. DeVallance, I. Pylypchuk, A. Moreno, and M. H. Sipponen, “Multifunctional lignin-poly (lactic acid) biocomposites for packaging applications,” Frontiers in Bioengineering and Biotechnology, vol. 10, 2022. DOI: https://doi.org/10.3389/fbioe.2022.1025076

H. Sun, G. Wang, J. Ge, N. Wei, W. Sui, Z. Chen, H. Jia, A. M. Parvez, and C. Si, “Reduction of lignin heterogeneity for improved catalytic performance of lignin nanosphere supported Pd nanoparticles,” Industrial Crops and Products, vol. 180, p. 114685, 2022. DOI: https://doi.org/10.1016/j.indcrop.2022.114685

M. R. V. Bertolo, L. B. Brenelli de Paiva, V. M. Nascimento,

C. A. Gandin, M. O. Neto, C. E. Driemeier, and S. C. Rabelo, “Lignins from sugarcane bagasse: Renewable source of nanoparticles as Pickering emulsions stabilizers for bioactive compounds encapsulation,” Industrial Crops and Products, vol. 140, p. 111591, 2019. DOI: https://doi.org/10.1016/j.indcrop.2019.111591

J. H. Choi, S.-M. Cho, J.-C. Kim, S. W. Park, Y.-M. Cho, B. Koo, H. W. Kwak, and I.-G. Choi, “Thermal properties of ethanol organosolv lignin depending on its structure,” ACS Omega, vol. 6, pp. 1534-1546, 2021. DOI: https://doi.org/10.1021/acsomega.0c05234

P. Wannid, B. Hararak, S. Padee, W. Klinsukhon, N. Suwannamek, M. Raita, K. Khao-on, and C. Prahsarn, “Structural and thermal characteristics of novel organosolv lignins extracted from thai biomass residues: A guide for processing,” Journal of Polymers and the Environment, vol. 8, p. 860, 2022. DOI: https://doi.org/10.1007/s10924-022-02387-4

F. Monteil-Rivera, M. Phuong, M. Ye, A. Halasz, and J. Hawari, “Isolation and characterization of herbaceous lignins for applications in biomaterials,” Industrial Crops and Products, vol. 41, pp. 356-364, 2013. DOI: https://doi.org/10.1016/j.indcrop.2012.04.049

F. Gomes, R. de Souza, E. Brito, and R. Lelis, “A review on lignin sources and uses,” Journal of Applied Biotechnology & Bioengineering, pp. 100-105, 2020. DOI: https://doi.org/10.15406/jabb.2020.07.00222

Y. Zhang and M. Naebe, “Lignin: A review on structure, properties, and applications as a light-colored UV absorber,” ACS Sustainable Chemistry & Engineering, vol. 9, pp. 1427-1442, 2021. DOI: https://doi.org/10.1021/acssuschemeng.0c06998

Y. Guo, D. Tian, F. Shen, G. Yang, L. Long, J. He, C. Song, J. Zhang, Y. Zhu, C. Huang, and S. Deng, “Transparent cellulose/ technical lignin composite films for advanced packaging,” Polymers, vol. 11, p. 1455, 2019. DOI: https://doi.org/10.3390/polym11091455

I. Brodin, M. Ernstsson, G. Gellerstedt, and E. Sjöholm, “Oxidative stabilisation of kraft lignin for carbon fibre production,” Holzforschung, vol. 66, pp. 141-147, 2012. DOI: https://doi.org/10.1515/HF.2011.133

I. Norberg, Y. Nordström, R. Drougge, G. Gellerstedt, and E. Sjöholm, “A new method for stabilizing softwood kraft lignin fibers for carbon fiber production,” Journal of Applied Polymer Science, vol. 128, pp. 3824-3830, 2013. DOI: https://doi.org/10.1002/app.38588

Y. Nordström, I. Norberg, E. Sjöholm, and R. Drougge, “A new softening agent for melt spinning of softwood kraft lignin,” Journal of Applied Polymer Science, vol. 129, pp. 1274-1279, 2013. DOI: https://doi.org/10.1002/app.38795

J. L. Braun, K. M. Holtman, and J. F. Kadla, “Lignin-based carbon fibers: Oxidative thermostabilization of kraft lignin,” Carbon, vol. 43, pp. 385-394, 2005. DOI: https://doi.org/10.1016/j.carbon.2004.09.027

H. Mainka, L. Hilfert, S. Busse, F. Edelmann, E. Haak, and A. S. Herrmann, “Characterization of the major reactions during conversion of lignin to carbon fiber,” Journal of Materials Research and Technology, vol. 4, pp. 377-391, 2015. DOI: https://doi.org/10.1016/j.jmrt.2015.04.005

F. Antunes, I. F. Mota, J. da Silva Burgal, M. Pintado, and P. S. Costa, “A review on the valorization of lignin from sugarcane by-products: From extraction to application,” Biomass Bioenergy, vol. 166, p. 106603, 2022. DOI: https://doi.org/10.1016/j.biombioe.2022.106603

B. Jiang, Y. Zhang, H. Zhao, T. Guo, W. Wu, and Y. Jin, “Structure-antioxidant activity relationship of active oxygen catalytic lignin and lignin-carbohydrate complex,” International Journal of Biological Macromolecules, vol. 139, pp. 21-29, 2019. DOI: https://doi.org/10.1016/j.ijbiomac.2019.07.134

S. H. Fasihnia, S. H. Peighambardoust, S. J. Peighambardoust, A. Oromiehie, M. Soltanzadeh, and D. Peressini, “Migration analysis, antioxidant, and mechanical characterization of poly-propylene-based active food packaging films loaded with BHA, BHT, and TBHQ.,” Journal of Food Science, vol. 85, pp. 2317-2328, 2020. DOI: https://doi.org/10.1111/1750-3841.15337

H. Ortiz-Vazquez, J. Shin, H. Soto-Valdez, and R. Auras, “Release of butylated hydroxytoluene (BHT) from Poly(lactic acid) films,” Polymer Testing, vol. 30, pp. 463-471, 2011. DOI: https://doi.org/10.1016/j.polymertesting.2011.03.006

R. Kaur, and S. K. Uppal, “Structural characterization and antioxidant activity of lignin from sugarcane bagasse,” Colloid and Polymer Science, vol. 293, pp. 2585-2592, 2015. DOI: https://doi.org/10.1007/s00396-015-3653-1

R. Kaur, S. K. Uppal, and P. Sharma, “Antioxidant and anti-bacterial activities of sugarcane bagasse lignin and chemically modified lignins,” Sugar Tech, vol. 19, pp. 675-680, 2017. DOI: https://doi.org/10.1007/s12355-017-0513-y

H. Kargarzadeh, A. Galeski, and A. Pawlak, “PBAT green composites: Effects of kraft lignin particles on the morphological, thermal, crystalline, macro and micromechanical properties,” Polymer, vol. 203, p. 122748, 2020. DOI: https://doi.org/10.1016/j.polymer.2020.122748

E. M. Zadeh, S. F. O’Keefe, and Y. T. Kim, “Utilization of lignin in biopolymeric packaging films,” ACS Omega, vol. 3, pp. 7388-7398, 2018. DOI: https://doi.org/10.1021/acsomega.7b01341

F. Xiong, Y. Wu, G. Li, Y. Han, and F. Chu, “Transparent nanocomposite films of lignin nanospheres and poly(vinyl alcohol) for UV-absorbing,” Industrial & Engineering Chemistry Research, vol. 57, pp. 1207-1212, 2018. DOI: https://doi.org/10.1021/acs.iecr.7b04108

X. Zhang, W. Liu, W. Liu, and X. Qiu, “High performance PVA/lignin nanocomposite films with excellent water vapor barrier and UV-shielding properties,” International Journal of Biological Macromolecules, vol. 142, pp. 551-558, 2020. DOI: https://doi.org/10.1016/j.ijbiomac.2019.09.129

J. Gómez-Estaca, C. López-de-Dicastillo, P. Hernández-Muñoz, R. Catalá, and R. Gavara, “Advances in antioxidant active food packaging,” Trends in Food Science & Technology, vol. 35, pp. 42-51, 2014. DOI: https://doi.org/10.1016/j.tifs.2013.10.008

A. J. Basbasan, B. Hararak, C. Winotapun, W. Wanmolee, P. Leelaphiwat, K. Boonruang, W. Chinsirikul, and V. Chonhenchob, “Emerging challenges on viability and commercialization of lignin in biobased polymers for food packaging: A review,” Food Packaging and Shelf Life, vol. 34, p. 100969, 2022. DOI: https://doi.org/10.1016/j.fpsl.2022.100969

M. Hosseini, L. Moghaddam, L. Barner, S. Cometta, D. W. Hutmacher, and F. Medeiros Savi, “The multifaceted role of tannic acid: From its extraction and structure to antibacterial properties and applications,” Progress in polymer science, vol. 160, p. 101908, 2025. DOI: https://doi.org/10.1016/j.progpolymsci.2024.101908

R. A. Lee, C. Bédard, V. Berberi, R. Beauchet, and J.-M. Lavoie, “UV–Vis as quantification tool for solubilized lignin following a single-shot steam process,” Bioresource Technology, vol. 144, pp. 658-663, 2013. DOI: https://doi.org/10.1016/j.biortech.2013.06.045

N. Kohan-Nia, R. Mahmoudi, and B. Pakbin, “Effect of packaging material on color properties of catsup tomato sauce.” Journal of Applied Packaging Research, vol 8, pp. 10-16, 2016.

A. Rajchl, M. Voldřich, H. Čížková, M. Hronová, R. Ševčík, J. Dobiáš, and J. Pivoňka, “Stability of nutritionally important compounds and shelf life prediction of tomato ketchup,” Journal of Food Engineering, vol. 99, pp. 465-470, 2010. DOI: https://doi.org/10.1016/j.jfoodeng.2010.01.035

G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations,” Color Research an Application, vol. 30, pp. 21-30, 2005. DOI: https://doi.org/10.1002/col.20070

Y. Zhang, and W. Jiang, “Effective strategies to enhance ultraviolet barrier ability in biodegradable polymer-based films/coatings for fruit and vegetable packaging,” Trends in Food Science & Technology, vol 139, p. 104139, 2023. DOI: https://doi.org/10.1016/j.tifs.2023.104139

Downloads

Published

2025-08-26

How to Cite

[1]
P. WIJARANAKUL, B. HARARAK, W. WANMOOLEE, P. WANNID, and W. LAOSIRIPOJANA, “Bagasse lignin for single-used food packaging applications: UV-barrier, antioxidant, migration and cytotoxicity”, J Met Mater Miner, vol. 35, no. 3, p. e2354, Aug. 2025.

Issue

Section

Original Research Articles